Wei Xiaohui, Song Xiaochen, Li Lirong, et al. Dynamic critical friction of landing gear shock absorber binding[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 732-736. doi: 10.13700/j.bh.1001-5965.2013.0418(in Chinese)
Citation: ZHENG Lifang, WAN Yuanyu, GUAN Shaoya, et al. A method for expanding workspace of electromagnetic tracking system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1956-1964. doi: 10.13700/j.bh.1001-5965.2019.0037(in Chinese)

A method for expanding workspace of electromagnetic tracking system

doi: 10.13700/j.bh.1001-5965.2019.0037
Funds:

National Natural Science Foundation of China 61873010

National Natural Science Foundation of China 61533016

More Information
  • Corresponding author: MENG Cai, E-mail: Tsai@buaa.edu.cn
  • Received Date: 23 Jan 2019
  • Accepted Date: 10 May 2019
  • Publish Date: 20 Oct 2019
  • Aimed at the problem of limited workspace and inconsistent measurement accuracy of NDI electromagnetic tracking equipment, a method for expanding the workspace of electromagnetic tracking system and guaranteeing measurement accuracy by moving magnetic field generator is proposed. This method uses the indicator value returned by NDI system as the measurement of accuracy. When the indicator value exceeds the set threshold, the magnetic field generator connected with the manipulator is moved to relocate the sensor in the optimum working area, and the position and attitude measured by the system are unified into the coordinate system of the manipulator base through spatial transformation. In order to verify the effectiveness of the proposed method, experiments are conducted to verify that the measurement error is positively correlated with the indicator value and the distance between the sensor and the center of the magnetic field generator. Then, by comparing the errors before and after the expansion, it is shown that the mean position error can be reduced from 2.61 mm to 1.34 mm, and the mean orientation error can be reduced from 2.42° to 1.37°. This method can be used to locate and track large-scale moving instruments such as vascular interventional catheters.

     

  • [1]
    FRANZ A M, HAIDEGGER T, BIRKFELLNER W, et al.Electromagnetic tracking in medicine—A review of technology, validation, and applications[J].IEEE Transactions on Medical Imaging, 2014, 33(8):1702-1725. doi: 10.1109/TMI.2014.2321777
    [2]
    BIRKFELLNER W.Calibration of tracking systems in surgical environment[J].IEEE Transactions on Medical Imaging, 1998, 17(5):737-742.
    [3]
    PÉRIÉ D, TATE A J, CHENG P L, et al.Evaluation and calibration of an electromagnetic tracking device for biomechanical analysis of lifting tasks[J].Journal of Biomechanics, 2002, 35(2):293-297. doi: 10.1016/S0021-9290(01)00188-9
    [4]
    FEUERSTEIN M, REICHL T, VOGEL J, et al.Magneto-optical tracking of flexible laparoscopic ultrasound:Model-based online detection and correction of magnetic tracking errors[J].IEEE Transactions on Medical Imaging, 2009, 28(6):951-967. doi: 10.1109/TMI.2008.2008954
    [5]
    WALLACE M J, GUPTA S, HICKS M E.Out-of-plane computed-tomography-guided biopsy using a magnetic-field-based navigation system[J].Cardio Vascular and Interventional Radiology, 2006, 29(1):108-113. doi: 10.1007/s00270-005-0041-0
    [6]
    KRVCKER J, XU S, GLOSSOP N, et al.Electromagnetic tracking for thermal ablation and biopsy guidance:Clinical evaluation of spatial accuracy[J].Journal of Vascular and Interventional Radiology, 2007, 18(9):1141-1150. doi: 10.1016/j.jvir.2007.06.014
    [7]
    WOOD B J, ZHANG H, DURRANI A, et al.Navigation with electromagnetic tracking for interventional radiology procedures:A feasibility study[J].Journal of Vascular and Interventional Radiology, 2005, 16(4):493-505. doi: 10.1097/01.RVI.0000148827.62296.B4
    [8]
    GERGEL I, GAA J, MVLLER M, et al.A novel fully automatic system for the evaluation of electromagnetic tracker[C]//Conference on Medical Imaging-Image-Guided Procedures, Robotic Interventions and Modeling.Bellingham: SPIE, 2012, 8316: 831608.
    [9]
    BOUTALEB S, RACINE E, FILLION O, et al.Performance and suitability assessment of a real-time 3D electromagnetic needle tracking system for interstitial brachytherapy[J].Journal of Contemporary Brachytherapy, 2015, 7(4):280-289.
    [10]
    KWARTOWITZ D M, RETTMANN M E, HOLMES D R, et al.A novel technique for analysis of accuracy of magnetic tracking systems used in image guided surgery[C]//Conference on Medical Imaging 2010-Visualization, Image-Guided Procedures, and Modeling.Bellingham: SPIE, 2010, 7625: 76251L.
    [11]
    关少亚, 孟偲, 万元宇, 等.基于薄板样条函数的电磁定位系统位姿校正方法[J].北京航空航天大学学报, 2018, 44(11):2350-2355. https://bhxb.buaa.edu.cn/CN/abstract/abstract14640.shtml

    GUAN S Y, MENG C, WAN Y Y, et al.A thin plate spline based method for correction of position and posture of electromagnetic tracking system[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11):2350-2355(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14640.shtml
    [12]
    REICHL T, GARDIAZABAL J, NAVAB N.Electromagnetic servoing—A new tracking paradigm[J].IEEE Transactions on Medical Imaging, 2013, 32(8):1526-1535. doi: 10.1109/TMI.2013.2259636
    [13]
    LUND K.Electromagnetic navigation vs fluoroscopy in aortic endovascular procedures—A phantom study[J].International Journal of Computer Assisted Radiology & Surgery, 2016, 12(1):1-7.
    [14]
    VILLAGRAN C R T, IKEDA S, FUKUDA T, et al.Catheter insertion path reconstruction with autonomous system for endovascular surgery[C]//International Symposium on Computational Intelligence in Robotics & Automation.Piscataway, NJ: IEEE Press, 2007: 47.
    [15]
    秦成.电磁跟踪系统的研究[D].武汉: 华中科技大学, 2013.

    QIN C.The research of electromagnetic tracking system[D].Wuhan: Huazhong University of Science and Technology, 2013(in Chinese).
    [16]
    罗伟, 张庆, 李珊珊, 等.新一代Aurora电磁跟踪系统在医学手术导航中的应用[J].中国医疗器械杂志, 2013, 37(2):126-128.

    LUO W, ZHANG Q, LI S S, et al.New generation Aurora electromagnetic tracking system in the medical surgical navigation[J].Chinese Journal Medical instrumentation, 2013, 37(2):126-128(in Chinese).
    [17]
    RAAB F, BLOOD E, STEINER T, et al.Magnetic position and orientation tracking system[J].IEEE Transactions on Aerospace and Electronic Systems, 1979, 15(5):709-718.
    [18]
    PARK F C, MARTIN B J.Robot sensor calibration:Solving AX=XB on the Euclidean group[J].IEEE Transactions on Robotics and Automation, 1994, 10(5):717-721. doi: 10.1109/70.326576
    [19]
    Northern Digital Inc.Aurora user guide[Z].Revision 4.Waterloo: Northern Digital Inc., 2008: 38.
  • Cited by

    Periodical cited type(17)

    1. 王金硕,何冉,刘海平. 高超滑翔飞行器对地侦察轨迹的分段优化策略. 战术导弹技术. 2025(01): 113-125+135 .
    2. 汪馨茹,苏子康,荆献勇,曾靖轩,黄宇. 基于未知坡度倾斜跑道地形融合的无人机定点着陆轨迹优化. 战术导弹技术. 2024(06): 94-106 .
    3. 熊文祥,陈倩,汪守利,杨贵玉,杨钊. 基于二阶锥规划的飞行器滑翔段轨迹优化. 导航与控制. 2024(Z1): 129-136 .
    4. 徐慧,蔡光斌,崔亚龙,侯明哲,姚二亮. 高超声速滑翔飞行器再入轨迹优化. 哈尔滨工业大学学报. 2023(04): 44-55 .
    5. 邵雷,李明杰,赵锦. 基于局部模型的再入滑翔类飞行器轨迹在线调整算法设计. 空军工程大学学报. 2023(03): 64-72 .
    6. 王帅,杨冬,陈贵亮,唐润智. 基于自适应radau伪谱法的机械手轨迹规划方法研究. 制造业自动化. 2022(03): 103-108+117 .
    7. 周池军,邵雷,骆长鑫,李明杰,雷虎民. 高动态目标拦截弹制导与控制前沿技术展望. 空天技术. 2022(02): 61-74 .
    8. 吕名添,周祥,张洪波. 基于解析初值的滑翔飞行器轨迹快速规划方法. 宇航总体技术. 2022(04): 35-40 .
    9. 张伟,陈国明,黄威,薛辉辉. 空投变掠翼滑翔炸弹轨迹优化. 飞行力学. 2022(06): 39-43 .
    10. 宋少倩,陈永信,任鹏飞,周文勇,李伟喆. 面向航程能力的固体火箭发动机方案设计优化. 哈尔滨工业大学学报. 2022(12): 27-37 .
    11. 王培臣,张睿轩,闫循良. 不确定条件下高超声速俯冲弹道鲁棒优化. 飞控与探测. 2022(06): 61-68 .
    12. 刘平,刘航,仇国庆,刘兴高. 热率约束下高超声速飞行器Gauss时间网格参数化轨迹规划. 控制理论与应用. 2022(12): 2283-2292 .
    13. 贾高伟,王建峰. 无人机集群任务规划方法研究综述. 系统工程与电子技术. 2021(01): 99-111 .
    14. 颜楚雄,王蕴宝,秦绪国,童轶男,宋加洪. 最小动压约束下的全程轨迹优化设计方法. 导弹与航天运载技术. 2021(01): 86-90 .
    15. 任鹏飞,王洪波,周国峰,王亮,蔡强,韩英宏,余家泉,袁亚. 临近空间固体动力飞行器发动机与轨迹一体化设计优化. 推进技术. 2021(09): 1936-1947 .
    16. 陈永信. 滑翔飞行器气动外形与轨迹一体化设计优化. 空天防御. 2021(03): 76-84 .
    17. 崔乃刚,郭冬子,李坤原,韦常柱. 飞行器轨迹优化数值解法综述. 战术导弹技术. 2020(05): 37-51+75+5 .

    Other cited types(14)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(1196) PDF downloads(407) Cited by(31)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return