Volume 45 Issue 10
Oct.  2019
Turn off MathJax
Article Contents
OU Nengjie, WANG Shengli, ZHANG Zhiet al. IMM mixing estimation method based on unequal dimension states[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2115-2122. doi: 10.13700/j.bh.1001-5965.2019.0038(in Chinese)
Citation: OU Nengjie, WANG Shengli, ZHANG Zhiet al. IMM mixing estimation method based on unequal dimension states[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2115-2122. doi: 10.13700/j.bh.1001-5965.2019.0038(in Chinese)

IMM mixing estimation method based on unequal dimension states

doi: 10.13700/j.bh.1001-5965.2019.0038
More Information
  • Corresponding author: WANG Shengli, E-mail:slwangbb@sina.com
  • Received Date: 29 Jan 2019
  • Accepted Date: 18 May 2019
  • Publish Date: 20 Oct 2019
  • The interacting multiple model (IMM) estimator has been proven to be of excellent performance and low complexity in tracking agile targets. The success of IMM attributes to mode mixing, where model outputs are mixed for model-conditional reinitialization. The problem of unequal dimension states mixing in IMM estimation is studied and an optimal method for IMM mixing is proposed based on summarizing the existing methods. By introducing the concept of "switching" state into the target state, the new method dynamically adjusts the hybrid strategy with model probability and innovation to achieve optimal estimation. The simulation results show that the proposed approach outperforms the existing algorithms in the scenarios of mixing different models.

     

  • loading
  • [1]
    LI X R, JILKOV V P.Survey of maneuvering target tracking.Part V.Multiple-model methods[J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4):1255-1321. doi: 10.1109/TAES.2005.1561886
    [2]
    MAZOR E, AVERBUCH A, BAR-SHALOM Y, et al.Interacting multiple model methods in target tracking:A survey[J].IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):103-123. doi: 10.1109/7.640267
    [3]
    FOO P H, NG G W.Combining the interacting multiple model method with particle filters for manoeuvring target tracking[J].IET Radar, Sonar & Navigation, 2011, 5(3):234-255. http://cn.bing.com/academic/profile?id=01c95f5140dc5e6cf0c125c59517ae3a&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    翟岱亮, 雷虎民, 李炯, 等.基于自适应IMM的高超声速飞行器轨迹预测[J].航空学报, 2016, 37(11):3466-3475. http://d.old.wanfangdata.com.cn/Periodical/hkxb201611024

    ZHAI D L, LEI H M, LI J, et al.Trajectory prediction of hypersonic vehicle based on adaptive IMM[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3466-3475(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201611024
    [5]
    LI X R.Multiple-model estimation with variable structure.II.Model-set adaptation[J].IEEE Transactions on Automatic Control, 2000, 45(11):2047-2060. doi: 10.1109/9.887626
    [6]
    JAFFER A G, GUPTA S C.On estimation of discrete processes under multiplicative and additive noise conditions[J].Information Sciences, 1971, 3(3):267-276. doi: 10.1016/S0020-0255(71)80010-5
    [7]
    BLOM H A P, BAR-SHALOM Y.The interacting multiple model algorithm for systems with Markovian switching coefficients[J].IEEE Transactions on Automatic Control, 1988, 33(8):780-783. doi: 10.1109/9.1299
    [8]
    LI X R, BAR-SHALOM Y.Multiple-model estimation with variable structure[J].IEEE Transactions on Automatic Control, 1996, 41(4):478-493. doi: 10.1109/9.489270
    [9]
    LAN J, LI X R.Equivalent-model augmentation for variable-structure multiple-model estimation[J].IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4):2615-2630. doi: 10.1109/TAES.2013.6621840
    [10]
    XU L, LI X R, DUAN Z.Hybrid grid multiple-model estimation with application to maneuvering target tracking[J].IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1):122-136. doi: 10.1109/TAES.2015.140423
    [11]
    BAR-SHALOM Y, WILLETT P K, TIAN X.Tracking and data fusion[M].Storrs:YBS Publishing, 2011.
    [12]
    YUAN T, BAR-SHALOM Y, WILLETT P, et al.A multiple IMM estimation approach with unbiased mixing for thrusting projectiles[J].IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4):3250-3267. doi: 10.1109/TAES.2012.6324701
    [13]
    GRANSTRÖM K, WILLETT P, BAR-SHALOM Y.Systematic approach to IMM mixing for unequal dimension states[J].IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4):2975-2986. doi: 10.1109/TAES.2015.150015
    [14]
    LOPEZ R, DANÈS P, ROYER F.Extending the IMM filter to heterogeneous-order state space models[C]//49th IEEE Conference on Decision and Control (CDC).Piscataway, NJ: IEEE Press, 2010: 7369-7374.
    [15]
    BAR-SHALOM Y, BIRMIWAL K.Variable dimension filter for maneuvering target tracking[J].IEEE Transactions on Aerospace and Electronic Systems, 1982, 27(5):621-629. doi: 10.1109-TAES.1982.309274/
    [16]
    JIN B, JIU B, SU T, et al.Switched Kalman filter-interacting multiple model algorithm based on optimal autoregressive model for manoeuvring target tracking[J].IET Radar, Sonar & Navigation, 2014, 9(2):199-209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1e669339a0e8d32a2585e2c4a7aa6bb
    [17]
    LI X R, JILKOV V P.Survey of maneuvering target tracking.Part IV: Decision-based methods[C]//SPIE Proceedings Series.Society of Photo-Optical Instrumentation Engineers.Piscataway, NJ: IEEE Press, 2002: 511-534.
    [18]
    LOPEZ R, DANES P.Low-complexity IMM smoothing for jump Markov nonlinear systems[J].IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3):1261-1272. doi: 10.1109/TAES.2017.2669698
    [19]
    KALMAN R E.A new approach to linear filtering and prediction problems[J].Journal of basic Engineering, 1960, 82(1):35-45. doi: 10.1115/1.3662552
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(908) PDF downloads(374) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return