Zhang Dayi, Shi Yajie, Lin Li, et al. Model analysis of bladed disk coupled system of compressor with low aspect ratio[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(09): 808-812. (in Chinese)
Citation: CHEN Shuai, FENG Cunqian, ZHANG Ronget al. Separation of midcourse multiple micro-motion targets based on DSFMT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 371-378. doi: 10.13700/j.bh.1001-5965.2019.0128(in Chinese)

Separation of midcourse multiple micro-motion targets based on DSFMT

doi: 10.13700/j.bh.1001-5965.2019.0128
Funds:

National Natural Science Foundation of China 61701528

More Information
  • Corresponding author: FENG Cunqian, E-mail: fengcunqian@sina.com
  • Received Date: 27 Mar 2019
  • Accepted Date: 12 Sep 2019
  • Publish Date: 20 Feb 2020
  • The ballistic missile forms a target group in its mid-flight, and the narrowband radar cannot separate the ballistic target from the distance because of its narrow bandwidth. In order to enable narrowband radar to separate ballistic targets, the micro-motion characteristics of ballistic targets were studied. The narrowband radar signal echo of vibration target was modeled and its convergence characteristics in discrete sinusoidal frequency modulation transform (DSFMT) domain were analyzed. The convergence characteristics of multi-component signals in the transform domain were studied to separate different signal components and the vibration frequency of the target was estimated. The simulation results show that the narrowband radar echoes of multiple vibration ballistic targets have obvious convergence characteristics in the DSFMT domain under the signal to noise ratio of -10 dB, the proposed algorithm can distinguish different vibration scattering points, and the estimated vibration frequency root mean square error is less than -2.5 dB.

     

  • [1]
    CHEN V C.Micro-Doppler effect in radar[M].[S.l.]:Artech House, 2011:3-5.
    [2]
    CHEN V C.Advances in applications of radar micro-Doppler signatures[C]//Proceedings of IEEE Antenna Measurements & Application. Piscataway, NJ: IEEE Press, 2014: 1-4.
    [3]
    高红卫, 谢良贵, 文树梁, 等.基于微多普勒特征的真假目标雷达识别研究[J].电波科学学报, 2008, 23(4):775-780.

    GAO H W, XIE L G, WEN S L, et al.Research on radar recognition of true and false targets based on micro-Doppler characteristics[J].Journal of Radio Science, 2008, 23(4):775-780(in Chinese).
    [4]
    邵长宇, 杜兰, 李飞, 等.基于多目标跟踪的空间锥体目标微多普勒频率提取方法[J].电子与信息学报, 2012, 34(12):259-264.

    SHAO C Y, DU L, LI F, et al.Micro Doppler frequency extraction method for space cone target based on multi-target tracking[J].Journal of Electronics and Information, 2012, 34(12):259-264(in Chinese).
    [5]
    张淑宁, 赵慧昌, 熊刚, 等.基于粒子滤波的单通道正弦调频混合信号分离与参数估计[J].物理学报, 2014, 63(15):158401-1-158401-9.

    ZHANG S N, ZHAO H C, XIONG G, et al.Separation and parameter estimation of single channel sinusoidal FM mixed signal based on particle filter[J].Journal of Physics, 2014, 63(15):158401-1-158401-9(in Chinese).
    [6]
    陈广锋, 张林让, 王纯.复合运动目标微多普勒特征的分析和提取[J].西安电子科技大学学报, 2011, 38(3):55-62.

    CHEN G F, ZHANG L R, WANG C.Analysis and extraction of micro-Doppler characteristics of compound moving targets[J].Journal of Xidian University, 2011, 38(3):55-62(in Chinese).
    [7]
    桑林, 李续武.弹道导弹中段目标群及识别技术研究[J].飞航导弹, 2015(1):66-69.

    SANG L, LI X W.Research on midcourse target group and recognition technology of ballistic missile[J].Aerial Missile, 2015(1):66-69(in Chinese).
    [8]
    束长勇, 张生俊, 黄沛霖, 等.基于微多普勒的空间锥体目标微动分类[J].北京航空航天大学学报, 2017, 43(7):1387-1392. doi: 10.13700/j.bh.1001-5965.2016.0500

    SHU C Y, ZHANG S J, HUANG P L, et al.Micro motion classification of space pyramidal targets based on micro Doppler[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7):1387-1392(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0500
    [9]
    LI P, WANG D, WANG H.Separation of micro-Doppler signals based on time frequency filter and Viterbi algorithm[J].Signal, Image and Video Processing, 2013, 7(3):593-605. doi: 10.1007/s11760-011-0263-3
    [10]
    李朝伟, 周希元, 陈卫东, 等.单脉冲雷达主波束内多目标的检测方法[J].电子学报, 2006, 34(6):1026-1030.

    LI C W, ZHOU X Y, CHEN W D, et al.Detection method of multi-target in main beam of monopulse radar[J].Journal of Electronics, 2006, 34(6):1026-1030(in Chinese).
    [11]
    孙志国, 陈晶, 曹雪, 等.基于离散正弦调频变换的多分量正弦调频信号参数估计方法[J].系统工程与电子技术, 2012, 34(10):1974-1979.

    SUN Z G, CHEN J, CAO X, et al.Parameter estimation of multicomponent SFM signals based on discrete sinusoidal frequency modulation transfoem[J].Systems Engineering and Electronics, 2012, 34(10):1974-1979(in Chinese).
    [12]
    樊养余, 邓莉君.基于离散正弦/余弦变换DC-DMT的可见光通信系统性能研究[J].光学学报, 2016, 36(11):1106001-1-1106001-9.

    FAN Y Y, DENG L J.Performance of visible light communication system based on discrete sine/cosine transform DC-DMT[J].Acta Optica Sinica, 2016, 36(11):1106001-1-1106001-9(in Chinese).
    [13]
    熊辉, 吕远, 曾德国.利用卡森准则的正弦调频信号参数估计方法[J].电子测量与仪器学报, 2010, 24(4):353-358.

    XIONG H, LV Y, ZENG D G.SFM signal parameter estimation algorithm based on Carson rule[J].Journal of Electronic Measurement and Instrument, 2010, 24(4):353-358(in Chinese).
    [14]
    罗迎, 柏又青, 张群, 等.弹道目标平动补偿与微多普勒特征提取方法[J].电子与信息学报, 2012, 34(3):602-608.

    LUO Y, BAI Y Q, ZHANG Q, et al.Method of trajectory target translation compensation and micro-Doppler feature extraction[J].Journal of Electronics and Information, 2012, 34(3):602-608(in Chinese).
    [15]
    马启烈, 鲁卫红, 冯存前, 等.基于微动目标主体信息的平动补偿方法[J].现代防御技术, 2013, 41(2):143-146.

    MA Q L, LU W H, FENG C Q, et al.Translation compensation method based on subject information of fretting target[J].Modern Defense Technology, 2013, 41(2):143-146(in Chinese).
    [16]
    夏殿松, 胡淼, 洪夏俊, 等.一种基于AMDF和ACF的基音周期提取算法研究[J].军事通信技术, 2009, 30(1):27-31.

    XIA D S, HU M, HONG X J, et al.A pitch period extraction algorithm based on AMDF and ACF[J].Military Communication Technology, 2009, 30(1):27-31(in Chinese).
    [17]
    赵祎, 张盛, 林孝康, 等.一种改进的基音周期提取算法[J].数据采集与处理, 2014, 29(2):304-308.

    ZHAO Y, ZHANG S, LIN X K, et al.An improved pitch period extraction algorithm[J].Data Acquisition and Processing, 2014, 29(2):304-308(in Chinese).
  • Relative Articles

    [1]JI L B,ZHU Y,CUI T S,et al. LPI radar signal recognition based on time-frequency reassignment algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1324-1331 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0218.
    [2]LI S T,JIN X P,SUN J,et al. LPI radar signal recognition based on high-order time-frequency spectrum features[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):314-320 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0993.
    [3]LI Huan, CUI Pengcheng, JIA Hongyin, GONG Xiaoquan, WU Xiaojun. Numerical Simulation of TSTO Interstage Separation Considering Constraint Force[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0839
    [4]QI C,XIE J W,FEI T Y,et al. Research on target detection performance of PA-MIMO radar based on channel reciprocity[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):214-221 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1014.
    [5]WANG X D,WANG P,SONG Y F,et al. HRRP recognition of midcourse ballistic targets based on AF-BiTCN[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):349-359 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0025.
    [6]XING H X,XING Q H. An optimal scheduling model for scintillation detection of netted radars[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3884-3893 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0924.
    [7]WANG Xiaoliang, WANG Congsheng, SHI Yuxiang, HE Weikun. The Classification Method of Multirotor Drones and Flying Birds under Low Signal-to-Noise Ratio for Radar[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0585
    [8]WANG J D,WANG X,TIAN Y R,et al. Threat assessment of radar radiation sources based on behavioral characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3196-3207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0848.
    [9]ZHAO Minghua, HUANG Xuewen, DU Shuangli, LYU Jiahao, ZHI Rui, SHI Cheng. Spatio-temporal separated transform memory networks for video anomaly detection[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0458
    [10]YIN Q L,CHEN Q,WANG Z Y,et al. Trajectory programming method of gliding-guided projectiles for penetration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3151-3161 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0049.
    [11]WANG Ruizheng, LI Shiqiang. Radar coherent integration method for high-speed maneuvering targets based on sequence reversal[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0268
    [12]LUO Yanyan, QI Qiaoshen, WANG Yongpeng, WU Xiongwei. Fretting wear test and performance degradation model of electrical connector under step random vibration[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0350
    [13]ZHANG Ke-yang, WANG Peng, YU Qi, YU Wen-bin, CHEN Wan-chun. Analytical solutions for ascent trajectory under the condition of high angle-of-attack[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0529
    [14]XIE Fan-wei, WANG Xu-gang, GU Zhen-zhen. Multi-stage Trajectory Planning Method for Uncertain Hazard Zone Avoidance based on Neural Networks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0521
    [15]SONG H Q,ZHANG K L,MA M,et al. Theory and performance research of DES and DDES in turbulent separation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2482-2492 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0653.
    [16]FU J W,WANG C. Configuration and multibody separation scheme of compact missile swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1630-1638 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0508.
    [17]ZHANG Pei-hong, ZHOU Gui-yu, SHEN Ying-ying, TANG Jing, ZHAO Wei, JIA Hong-yin. Research on simulation of parallel separation characteristics using NNW-FlowStar software[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0275
    [18]SHI F Y,ZHENG X J,JIANG L H,et al. Point cloud registration algorithm for non-cooperative targets based on Hough transform[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2071-2078 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0575.
    [19]SONG L P,CHEN D F,TIAN T,et al. A real-time correlation algorithm for GEO targets based on radar ranging and velocity measurement[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2167-2175 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0615.
    [20]LIU S S,LI X,MAN H J,et al. Ballistic coefficient solution for non-cooperative targets and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1036-1043 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0414.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0505101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.8 %FULLTEXT: 23.8 %META: 73.4 %META: 73.4 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %Seattle: 0.2 %Seattle: 0.2 %上海: 1.1 %上海: 1.1 %北京: 4.9 %北京: 4.9 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %南宁: 0.2 %南宁: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %天津: 0.2 %天津: 0.2 %宣城: 0.2 %宣城: 0.2 %巴音郭楞: 0.6 %巴音郭楞: 0.6 %张家口: 0.8 %张家口: 0.8 %杭州: 0.2 %杭州: 0.2 %江门: 0.2 %江门: 0.2 %沈阳: 0.2 %沈阳: 0.2 %深圳: 9.8 %深圳: 9.8 %温州: 0.6 %温州: 0.6 %漯河: 1.5 %漯河: 1.5 %石家庄: 1.3 %石家庄: 1.3 %芒廷维尤: 13.8 %芒廷维尤: 13.8 %西宁: 54.9 %西宁: 54.9 %西安: 1.1 %西安: 1.1 %贵阳: 0.4 %贵阳: 0.4 %费利蒙: 0.6 %费利蒙: 0.6 %运城: 0.9 %运城: 0.9 %连云港: 0.2 %连云港: 0.2 %郑州: 0.6 %郑州: 0.6 %长沙: 0.4 %长沙: 0.4 %其他Seattle上海北京十堰南京南宁哥伦布天津宣城巴音郭楞张家口杭州江门沈阳深圳温州漯河石家庄芒廷维尤西宁西安贵阳费利蒙运城连云港郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(680) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return