Volume 46 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
HUANG Wentao, SHI Peng, ZHAO Yushan, et al. Orbit correction method of space-based laser interferometric gravitational wave detector[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 598-607. doi: 10.13700/j.bh.1001-5965.2019.0177(in Chinese)
Citation: HUANG Wentao, SHI Peng, ZHAO Yushan, et al. Orbit correction method of space-based laser interferometric gravitational wave detector[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 598-607. doi: 10.13700/j.bh.1001-5965.2019.0177(in Chinese)

Orbit correction method of space-based laser interferometric gravitational wave detector

doi: 10.13700/j.bh.1001-5965.2019.0177
Funds:

National Natural Science Foundation of China 11572019

Shanghai Aerospace Science and Technology Innovation Fund SAST2017095

More Information
  • Corresponding author: SHI Peng, E-mail:shipeng@buaa.edu.cn
  • Received Date: 22 Apr 2019
  • Accepted Date: 11 Oct 2019
  • Publish Date: 20 Mar 2020
  • Aimed at the orbit correction problem of space-based laser interferometric gravitational wave detector, a spacecraft orbit correction method based on virtual formation configuration design is proposed. The detector is composed of three spacecraft forming an equilateral triangle configuration. The configuration of the detector is unstable due to the orbit error and perturbation. It is assumed that an ideal spacecraft is running in nominal orbit, and the real spacecraft in actual orbit forms a virtual formation with the ideal spacecraft. The three spacecraft of detector form three virtual formations with their ideal spacecraft. Considering the stability requirement of detector configuration and the effect of perturbation, the configuration of the virtual formation is designed to solve the correction value of mean orbital elements of spacecraft. The orbit correction value is less than the orbit deviation value, and orbit correction is realized by four-pulse control. The numerical simulation results show that the method meets the stability requirements of the detector configuration through partial orbit correction, and has the potential to reduce fuel consumption and prolong mission life.

     

  • loading
  • [1]
    罗子人, 白姗, 边星, 等.空间激光干涉引力波探测[J].力学进展, 2013, 43(4):415-447. http://d.old.wanfangdata.com.cn/Periodical/twxjz201501004

    LUO Z R, BAI S, BIAN X, et al.Space laser interferometry gravitational wave detection[J].Advances in Mechanics, 2013, 43(4):415-447(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/twxjz201501004
    [2]
    WEBER J.Observation of the thermal fluctuations of a gravitational-wave detector[J].Physical Review Letters, 1966, 17(24):1228-1230. doi: 10.1103/PhysRevLett.17.1228
    [3]
    BLAIR D, JU L, ZHAO C N, et al.Gravitational wave astronomy:The current status[J].Science China Physics Mechanics & Astronomy, 2015, 58(12):120402. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221825959/
    [4]
    ABBOTT B P, ABBOTT R, ABBOTT T D, et al.Observation of gravitational waves from a binary black hole merger[J].Physical Review Letters, 2016, 116(6):061102. doi: 10.1103/PhysRevLett.116.061102
    [5]
    CORNELISSE J W.LISA mission and system design[J].Classical and Quantum Gravity, 1996, 13(11A):A251-A258. doi: 10.1088/0264-9381/13/11A/034
    [6]
    ARMANO M, AUDLEY H, BAIRD J, et al.Beyond the required LISA free-fall performance:New LISA pathfinder results down to 20 μHz[J].Physical Review Letters, 2018, 120(6):061101. doi: 10.1103/PhysRevLett.120.061101
    [7]
    WU A M, NI W T.Deployment and simulation of the ASTROD-GW formation[J].International Journal of Modern Physics D, 2013, 22(1):1341005. doi: 10.1142/S0218271813410058
    [8]
    JIN G.Program in space detection of gravitational wave in Chinese Academy of Sciences[C]//11th International LISA Symposium.Bristol: IOP Publishing, 2017, 840(1): 012009.
    [9]
    LUO J, CHEN L S, DUAN H Z, et al.TianQin:A space-borne gravitational wave detector[J].Classical and Quantum Gravity, 2016, 33(3):035010. doi: 10.1088/0264-9381/33/3/035010
    [10]
    HU X C, LI X H, WANG Y, et al.Fundamentals of the orbit and response for TianQin[J].Classical and Quantum Gravity, 2018, 35(9):095008. doi: 10.1088/1361-6382/aab52f
    [11]
    万小波, 张晓敏, 黎明.天琴计划轨道构型长期漂移特性分析[J].中国空间科学技术, 2017, 37(3):110-116. http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs201703014

    WAN X B, ZHANG X M, LI M.Analysis of long-period drift characteristics for orbit configuration of TianQin Mission[J].Chinese Space Science and Technology, 2017, 37(3):110-116(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs201703014
    [12]
    YE B B, ZHANG X, ZHOU M Y, et al.Optimizing orbits for TianQin[J].International Journal of Modern Physics D, 2019, 28(9):1950121. doi: 10.1142/S0218271819501219
    [13]
    YANG C, ZHNAG H.Formation flight design for a LISA-like gravitational wave observatory via Cascade optimization[J].Astrodynamics, 2019, 3(2):155-171. doi: 10.1007/s42064-018-0042-9
    [14]
    唐文林.中国空间引力波探测计划卫星轨道设计的初步研究[D].北京: 中国科学院大学, 2014: 17-31.

    TANG W L, Preliminary study of the orbit design of the Chinese mission to detect the gravitational wave in space[D].Beijing: University of Chinese Academy of Sciences, 2014: 17-31(in Chinese).
    [15]
    WANG G, NI W T.Orbit optimization for ASTROD-GW and its time delay interferometry with two arms using CGC ephemeris[J].Chinese Physics B, 2013, 22(4):571-579. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1205.5175
    [16]
    刘林, 汤靖师.卫星轨道理论与应用[M].北京:电子工业出版社, 2015:227-243.

    LIU L, TANG J S.Theory and application of satellite orbit[M].Beijing:Publishing House of Electronics Industry, 2015:227-243(in Chinese).
    [17]
    PRADO B D A, FERNANDO A.Third-body perturbation in orbits around natural satellites[J].Journal of Guidance, Control, and Dynamics, 2003, 26(1):33-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5817fa93351ace7e47d84e6b5548b5fa
    [18]
    杜耀珂, 杨盛庆, 完备, 等.近地卫星严格回归轨道保持控制[J].航空学报, 2018, 39(12):322449. http://d.old.wanfangdata.com.cn/Periodical/hkxb201812029

    DU Y K, YANG S Q, WAN B, et al.Strictly-regressive orbit maintenance control of near earth satellites[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(12):322449(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201812029
    [19]
    孟云鹤.航天器编队飞行导论[M].北京:国防工业出版社, 2014:28-32.

    MENG Y H.Introduction to spacecraft formation flying[M].Beijing:National Defense Industry Press, 2014:28-32(in Chinese).
    [20]
    HOU X Y, ZHAO Y H, LIU L.Formation flying in elliptic orbits with the J2 perturbation[J].Research in Astronomy and Astrophysics, 2012, 12(11):1563. doi: 10.1088/1674-4527/12/11/010
    [21]
    ROSCOE C W T, VADALI S R, ALFRIEND K T.Third-body perturbation effects on satellite formations[J].Journal of the Astronautical Sciences, 2013, 60(3-4):408-433. doi: 10.1007/s40295-015-0057-x
    [22]
    曹喜滨, 张锦绣, 王峰.航天器编队动力学与控制[M].北京:国防工业出版社, 2013:103-121.

    CAO X B, ZHANF J X, WANG F.The dynamics and control of spacecraft formation flying[M].Beijing:National Defense Industry Press, 2013:103-121(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views(517) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return