Citation: | SUN Hao, GUO Yingqing, ZHAO Wanliet al. Information reconstruction algorithm of aero-engine sensors and actuators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 331-339. doi: 10.13700/j.bh.1001-5965.2019.0240(in Chinese) |
In order to realize the fault magnitude estimation and information reconstruction of aero-engine sensor and actuator in fault condition and to accommodate the influence of fault on engine performance, based on the fault detection and fault isolation algorithms, a reconstruction algorithm based on a modified generalized likelihood ratio (GLR) method is proposed. Aimed at the constant deviation fault and drift fault of sensors and actuators of a certain type of civil turbofan engine, a simulation experiment was implemented. The simulation results show that the modified GLR method has higher accuracy for fault magnitude estimation of sensors and actuators with constant deviation and drift fault. The root mean square error of the fault magnitude estimation does not exceed 0.005 in both fault types. And after the information reconstruction of fault component, the effect of the fault on the system performance is effectively accommodated.
[1] |
KUMAR A, VIASSOLO D E.Model-based fault tolerant control: NASA/CR 2008-215273[R].Washington, D.C.: NASA, 2008.
|
[2] |
CHEN R H, SPEYER J L.Sensor and actuator fault reconstruction[J].Journal of Guidance, Control, and Dynamics, 2004, 27(2):186-196. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024401232/
|
[3] |
AZAM M, GHOSHAL S, BELL J, et al.Prognostics and health management(PHM)of electromechanical actuation(EMA)systems for next-generation aircraft: AIAA-2013-5138[R].Reston: AIAA, 2013. https://www.researchgate.net/publication/268469132_Prognostics_and_Health_Management_PHM_of_Electromechanical_Actuation_EMA_Systems_for_Next-Generation_Aircraft
|
[4] |
ZEDDA M, SINGH R.Gas turbine engine and sensor fault diagnosis using optimization techniques[J].Journal of Propulsion & Power, 2002, 18(5):1019-1025. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0213357416/
|
[5] |
贺小栋, 郭迎清, 杜宪.一种基于模型的涡扇发动机容错控制策略[J].航空动力学报, 2016, 31(3):708-716. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201603023
HE X D, GUO Y Q, DU X.A model-based fault tolerant control strategy for turbofan engine[J].Journal of Aerospace Power, 2016, 31(3):708-716(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201603023
|
[6] |
周东华, 叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社, 2000:11-14.
ZHOU D H, YE Y Z.Modern fault diagnosis and fault tolerance control[M].Beijing:Tsinghua University Press, 2000:11-14(in Chinese).
|
[7] |
阎成鸿.航空发动机容错控制系统设计[J].微计算机信息, 2007, 23(19):63-64. doi: 10.3969/j.issn.1008-0570.2007.19.026
YAN C H.The fault tolerant control system of aero-engine[J].Microcomputer Information, 2007, 23(19):63-64(in Chinese). doi: 10.3969/j.issn.1008-0570.2007.19.026
|
[8] |
KOBAYASHI T, SIMON D L.Hybrid Kalman filter: A new approach for aircraft engine in-flight diagnostics: NASA/TM 2006-214491[R].Washington, D.C.: NASA, 2006.
|
[9] |
张书刚, 郭迎清, 陈小磊.航空发动机故障诊断系统性能评价与仿真验证[J].推进技术, 2013, 34(8):1121-1127. http://d.old.wanfangdata.com.cn/Periodical/tjjs201308018
ZHANG S G, GUO Y Q, CHEN X L.Performance evaluation and simulation validation of fault diagnosis system for aircraft engine[J].Journal of Propulsion Technology, 2013, 34(8):1121-1127(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201308018
|
[10] |
叶志锋, 孙健国.应用神经网络诊断航空发动机气路故障的前景[J].推进技术, 2002, 23(1):1-4. doi: 10.3321/j.issn:1001-4055.2002.01.001
YE Z F, SUN J G.Prospect for neural networks used aeroengine fault diagnosis technology[J].Journal of Propulsion Technology, 2002, 23(1):1-4(in Chinese). doi: 10.3321/j.issn:1001-4055.2002.01.001
|
[11] |
崔文斌, 叶志锋, 彭利方.基于信息融合遗传算法的航空发动机气路故障诊断[J].航空动力学报, 2015, 30(5):1275-1280. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201505032
CUI W B, YE Z F, PENG L F.Aero-engine gas path fault diagnosis based on genetic algorithm of information fusion[J].Journal of Aerospace Power, 2015, 30(5):1275-1280(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201505032
|
[12] |
CSANK J T, SIMON D L.Sensor data qualification technique applied to gas turbine engines: NASA/TM 2013-216609[R].Washington, D.C.: NASA, 2013. https://ntrs.nasa.gov/search.jsp?R=20140011476
|
[13] |
POURBABAEE B, MESKIN N, KHORASANI K.Sensor fault detection, isolation, and identification using multiple-model-based hybrid kalman filter for gas turbine engines[J].IEEE Transactions on Control Systems Technology, 2016, 24(4):1184-1200. doi: 10.1109/TCST.2015.2480003
|
[14] |
KOBAYASHI T.Aircraft engine sensor/actuator/component fault diagnosis using a bank of Kalman filters: NASA/CR 2003-212298[R].Washington, D.C.: NASA, 2003.
|
[15] |
袁春飞, 姚华.传感器故障下的航空发动机机载自适应模型重构[J].航空动力学报, 2006, 21(1):195-200. doi: 10.3969/j.issn.1000-8055.2006.01.035
YUAN C F, YAO H.Aero-engine adaptive model re-construction under sensor failure[J].Journal of Aerospace Power, 2006, 21(1):195-200(in Chinese). doi: 10.3969/j.issn.1000-8055.2006.01.035
|
[16] |
张高钱.航空发动机传感器故障诊断与容错控制[D].南京: 南京航空航天大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10287-1014060682.htm
ZHANG G Q.Research on aero-engine sensor fault diagnosis and fault tolerant control[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1014060682.htm
|
[17] |
周东华, 孙优贤.控制系统的故障检测与诊断技术[M].北京:清华大学出版社, 1994:19-20.
ZHOU D H, SUN Y X.Control system fault detection and diagnosis technology[M].Beijing:Tsinghua University Press, 1994:19-20(in Chinese).
|
[18] |
张书刚, 郭迎清, 陆军.基于GasTurb/MATLAB的航空发动机部件级模型研究[J].航空动力学报, 2012, 27(12):2850-2856. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201212032
ZHANG S G, GUO Y Q, LU J.Research on aircraft engine component-level models based on GasTurb/MATLAB[J].Journal of Aerospace Power, 2012, 27(12):2850-2856(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201212032
|
[19] |
SOWERS S T.Systematic sensor selection strategy(S4)user guide: NASA/CR 2012-215242[R].Washington, D.C.: NASA, 2012. https://ntrs.nasa.gov/search.jsp?R=20120003357
|