Volume 46 Issue 2
Feb.  2020
Turn off MathJax
Article Contents
CHEN Haoran, CUI Lijie, REN Bo, et al. Sensitivity analysis for aviation insecure event using Monte-Carlo method under uncertain conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 414-421. doi: 10.13700/j.bh.1001-5965.2019.0242(in Chinese)
Citation: CHEN Haoran, CUI Lijie, REN Bo, et al. Sensitivity analysis for aviation insecure event using Monte-Carlo method under uncertain conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 414-421. doi: 10.13700/j.bh.1001-5965.2019.0242(in Chinese)

Sensitivity analysis for aviation insecure event using Monte-Carlo method under uncertain conditions

doi: 10.13700/j.bh.1001-5965.2019.0242
Funds:

National Natural Science Foundation of China 71401174

National Natural Science Foundation of China 71701210

NatiyNatural Science Foundation of Shaanxi Provinceonal Natural Science Foundation of China 2019JQ-710

Aeronautical Science Foundation of China 20165196017

More Information
  • Corresponding author: CUI Lijie. E-mail: lijie_cui@163.com
  • Received Date: 19 May 2019
  • Accepted Date: 31 Aug 2019
  • Publish Date: 20 Feb 2020
  • To solve the problem of sensitivity analysis of aviation insecure events under uncertain conditions, this paper proposes the aviation safety index and its sensitivity measurement based on the Bow-tie model. Taking the tire burst accident as an example, we calculate the aviation safety index, the global sensitivity for basic event and its local sensitivity for distribution parameters using Monte-Carlo method. According to the simulation results of the tire burst accident, both types of sensitivity indexes vary with the increasing flight hour, and the most significant change appears during 500-600 h, but with the same order of index importance. The type of basic events is the main factor affecting sensitivity, for the sensitivity of electronic events is far less than the mechanical events. In the uniform type of basic events, the mean time before failure is not the leading factor affecting the sensitivity, which has a close relationship with the failure transferring logic. The results of this example demonstrate that the safety index descends with the flight hour, and the focus for improving aviation safety is to pay attention to accident caused by aviation components failures in 500-600 h. The importance of sensitivity will not change with the flight hour, and the key of preventing aviation accident is to improve the degree of reliability for basic events with a higher sensitivity.

     

  • loading
  • [1]
    BORGONOVO E, PLISCHKE E.Sensitivity analysis:A review of recent advances[J].European Journal of Operational Research, 2016, 248(3):869-887. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2307/3391241
    [2]
    PIANOSI F, BEVEN K, FREER J, et al.Sensitivity analysis of environment models:A systematic review with practical workflow[J].Environmental Modelling & Software, 2016, 79:214-32. https://www.sciencedirect.com/science/article/pii/S1364815216300287
    [3]
    LI L Y, LU Z Z, WU D Q.A new kind of sensitivity index for multivariate output[J].Reliability Engineering and System Safety, 2016, 147:123-131. doi: 10.1016/j.ress.2015.11.006
    [4]
    CAO J K, DING S T.Sensitivity analysis for design verification of general aviation reciprocating aircraft engine[J].Chinese Journal of Aeronautics, 2012, 25(5):675-680. doi: 10.1016/S1000-9361(11)60433-0
    [5]
    CAO J K, DING S T, DU F R.Surrogate-based sensitivity analysis for safety assement of general aviation heavy-fueled engines[J].Procedia Engineering, 2014, 80:66-75. doi: 10.1016/j.proeng.2014.09.061
    [6]
    ZENTNER I, TARANTOLA S, DE ROCQUIGNY E.Sensitivity analysis for reliable design verification of nuclear turbosets[J].Reliability Engineering and System Safety, 2011, 96:391-397. doi: 10.1016/j.ress.2010.10.005
    [7]
    金燕, 刘少军.基于人工神经网络的航空轴承疲劳可靠性分析[J].东北大学学报(自然科学版), 2018, 39(6):850-855. http://d.old.wanfangdata.com.cn/Periodical/dbdxxb201806018

    JIN Y, LIU S J.Fatigue reliability analysis of aviation bearings based on ANN[J].Journal of Northeastern University(Nature Science), 2018, 39(6):850-855(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dbdxxb201806018
    [8]
    权凌霄, 张琦玮, 李长春, 等.航空液压管路支架参数灵敏度分析及优化[J].液压与气动, 2017(8):95-99. http://d.old.wanfangdata.com.cn/Periodical/yyyqd201708016

    QUAN L X, ZHANG Q W, LI C C, et al.Sensitivity analysis and optimization for support parameter of aviation hydraulic pipeline[J].Chinese Hydraulics & Pneumatics, 2017(8):95-99(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yyyqd201708016
    [9]
    张马兰, 刘君强, 左洪福, 等.基于区间数学理论和贝叶斯网络指标灵敏度分析[J].武汉理工大学学报(交通科学与工程版), 2015, 39(1):162-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whjtkjdxxb201501037

    ZHANG M L, LIU J Q, ZUO H F, et al.Sensitivity analysis for indicators based on Bayesian network and interval mathematics[J].Journal of Wuhan University of Technology(Transportation Science and Engineering), 2015, 39(1):162-170(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whjtkjdxxb201501037
    [10]
    陈超, 吕震宙.模糊分布参数的全局灵敏度分析方法[J].工程力学, 2016, 33(2):25-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201602004

    CHEN C, LV Z Z.A new method for global sensitivity analysis of fuzzy distribution parameters[J].Engineering Mechanics, 2016, 33(2):25-33(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201602004
    [11]
    锁斌, 曾超, 程永生, 等.认知不确定性下可靠性灵敏度分析的新指标[J].航空学报, 2013, 34(7):1605-1615. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201307012

    SUO B, ZENG C, CHENG Y S, et al.New index for reliability sensitivity analysis under epistemic uncertainty[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1605-1615(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201307012
    [12]
    CUI L J, ZHANG J K, REN B, et al.Research on a new aviation safety index and its solution under uncertainty conditions[J].Safety Science, 2018, 107:55-61. doi: 10.1016/j.ssci.2018.04.001
    [13]
    PURTON L, CLOTHIER R, KOUROUSIS K.Assessment of technical airworthiness in military aviation:Implementation and further advancement of the Bow-tie model[J].Procedia Engineering, 2014, 80:529-544. doi: 10.1016/j.proeng.2014.09.110
    [14]
    CLOTHIER R A, WILLIAMS B P, HAYHURST K J.Modeling the risks remotely piloted aircraft pose to people on the ground[J].Safety Science, 2018, 101:33-47. doi: 10.1016/j.ssci.2017.08.008
    [15]
    U.S.Department of Defense.Standard practice for system safety: MIL-HDBK-882D[S].Washington, D.C.: U.S.Department of Defense, 2000: 16-20.
    [16]
    SAE International.Guidelines for development of civil aircraft systems: ARP4754A[S].Washington, D.C.: SAE International, 2010: 160-162.
    [17]
    U.S.Department of Defense.Reliability prediction of electronic equipment: MIL-HDBK-217E[S].Washington, D.C.: U.S.Department of Defense, 1991: 121-125.
    [18]
    DAVID R E.Location of commercial aircraft accidents/incidents relative to runways: DOT/FA/AOV 90-1 FINAL REPO[R].Washington, D.C.: FAA, 1990.
    [19]
    FAA.System design and analysis: AC25.1309-1A[S].Washington, D.C.: FAA, 1988: 57-63.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(721) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return