Volume 46 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
LI Jun, JIANG Zhenyu. Online trajectory planning algorithm for hypersonic glide re-entry problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 579-587. doi: 10.13700/j.bh.1001-5965.2019.0262(in Chinese)
Citation: LI Jun, JIANG Zhenyu. Online trajectory planning algorithm for hypersonic glide re-entry problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 579-587. doi: 10.13700/j.bh.1001-5965.2019.0262(in Chinese)

Online trajectory planning algorithm for hypersonic glide re-entry problem

doi: 10.13700/j.bh.1001-5965.2019.0262
More Information
  • Corresponding author: JIANG Zhenyu, E-mail:jiang_nudt@sina.com
  • Received Date: 28 May 2019
  • Accepted Date: 29 Jun 2019
  • Publish Date: 20 Mar 2020
  • In order to improve the capability of the glide reentry vehicle to respond to dynamic missions and improve the robustness of its guidance system, an online solving method for hypersonic glide re-entry trajectory planning problem is established. The method approximates the original problem by a series of convex subproblems. By choosing arc length as the independent variable and introducing logarithmic velocity as the state instead of velocity, the nonlinearity of the dynamic equation is greatly reduced, and the dynamic pressure and heat flow constraints completely become linear constraints. No-fly zone constraints are treated by using a cutting plane method like mixed integer programming to avoid unnecessary calculation as much as possible. By taking the product of aerodynamic coefficient and atmospheric density as the control quantity directly, the pseudo-linear control model is constructed to further weaken the nonlinearity. The non-convex constraint is relaxed appropriately to ensure the feasibility of the subproblem. In order to avoid excessive relaxation, the upper and lower boundaries of the given off-line height and speed are used to estimate the corresponding parameters in order to accelerate convergence. The X-33 re-entry task is taken as an example to verify the effectiveness of the method. The method can take simple constant function as initial value and converge after several iterations.

     

  • loading
  • [1]
    ISTRATIE V.Optimal profound entry into atmosphere with minimum heat and constraints: AIAA-2001-4069[R].Reston: AIAA, 2001.
    [2]
    BOLLINO K, OPPENHEIMER M, DOMAN D.Optimal guidance command generation and tracking for reusable launch vehicle reentry: AIAA-2006-6691[R].Reston: AIAA, 2006.
    [3]
    REA J.Launch vehicle trajectory optimization using a Legendre pseudospectral method: AIAA-2003-5640[R].Reston: AIAA, 2003.
    [4]
    黄长强, 国海峰, 丁达理.高超声速滑翔飞行器轨迹优化与制导综述[J].宇航学报, 2014, 35(4):369-379. doi: 10.3873/j.issn.1000-1328.2014.04.001

    HUANG C Q, GUO H F, DING D L.A survey of trajectory optimization and guidance for hypersonic gliding vehicle[J].Journal of Astronautics, 2014, 35(4):369-379(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.04.001
    [5]
    HARPOLD J C, GAVERT D E.Space shuttle entry guidance performance results[J].Journal of Guidance, Control, and Dynamics, 1983, 6(6):442-447. doi: 10.2514/3.8523
    [6]
    ROENNEKE A J, MARKL A.Re-entry control to a drag-vs-energy profile[J].Journal of Guidance, Control, and Dynamics, 1994, 17(5):916-920. doi: 10.2514/3.21290
    [7]
    LEAVITT J A, MEASE K D.Feasible trajectory generation for atmospheric entry guidance[J].Journal of Guidance, Control, and Dynamics, 2007, 30(2):473-481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf7e368091bb0043434c987a691d5ca5
    [8]
    李昭莹, 黄兴李, 李惠峰.基于闭环解析解的可重复使用运载器轨迹在线生成方法[J].宇航学报, 2013, 34(6):755-762. doi: 10.3873/j.issn.1000-1328.2013.06.003

    LI Z Y, HUANG X L, LI H F.On-line trajectory generation method based on closed-form analytical solution for reusable launch vehicle[J].Journal of Astronautics, 2013, 34(6):755-762(in Chinese). doi: 10.3873/j.issn.1000-1328.2013.06.003
    [9]
    胡锦川, 张晶, 陈万春.高超声速飞行器平稳滑翔弹道解析解及其应用[J].北京航空航天大学学报, 2016, 42(5):961-968. doi: 10.13700/j.bh.1001-5965.2015.0330

    HU J C, ZHANG J, CHEN W C.Analytical solutions of steady glide trajectory for hypersonic vehicle and planning application[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):961-968(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0330
    [10]
    BOYD S, VANDENBERGHE L.Convex optimization[M].Cambridge:Cambridge University Press, 2004:157-160.
    [11]
    NESTEROV Y, NEMIROVSKII A.Interior-point polynomial algorithms in convex programming[M].Philadelphia:Society for Industrial and Applied Mathematics Press, 1994:102-137.
    [12]
    LIU X, SHEN Z, LU P.Entry trajectory optimization by second-order cone programming[J].Journal of Guidance, Control, and Dynamics, 2016, 39(2):227-241. http://cn.bing.com/academic/profile?id=fea41f0e6900ce265610ac77b34fc2a4&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    WANG Z, GRANT M J.Constrained trajectory optimization for planetary entry via sequential convex programming: AIAA-2016-3241[R].Reston: AIAA, 2016.
    [14]
    BALAS E, CERIA S, CORNUÉJOLS G.A lift-and-project cutting plane algorithm for mixed 0-1 programs[J].Mathematical Programming, 1993, 58(1-3):295-324. doi: 10.1007/BF01581273
    [15]
    MARCHAND H, MARTIN A, WEISMANTEL R, et al.Cutting planes in integer and mixed integer programming[J].Discrete Applied Mathematics, 2002, 123(1-3):397-446. doi: 10.1016/S0166-218X(01)00348-1
    [16]
    TOMÁS-RODRÍGUEZ M, BANKS S P.Linear, time-varying approximations to nonlinear dynamical systems:With applications in control and optimization[M].Berlin:Springer, 2010:112-131.
    [17]
    BANKS S P, DINESH K.Approximate optimal control and stability of nonlinear finite-and infinite-dimensional systems[J].Annals of Operations Research, 2000, 98:19-44. doi: 10.1023/A:1019279617898
    [18]
    LOFBERG J.YALMIP: A toolbox for modeling and optimization in MATLAB[C]//2004 IEEE International Conference on Robotics and Automation.Piscataway, NJ: IEEE Press, 2004: 284-289.
    [19]
    ANDERSEN E D, ANDERSEN K D.The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm[M]//HANS F, KEES R, TAMÁS T.High performance optimization.Berlin: Springer, 2000: 197-232.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(812) PDF downloads(266) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return