Volume 46 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
XU Hanqing, FAN Weijun, ZHANG Rongchun, et al. Static response performance of yttria-stabilized zirconia based flame sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 524-531. doi: 10.13700/j.bh.1001-5965.2019.0267(in Chinese)
Citation: XU Hanqing, FAN Weijun, ZHANG Rongchun, et al. Static response performance of yttria-stabilized zirconia based flame sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 524-531. doi: 10.13700/j.bh.1001-5965.2019.0267(in Chinese)

Static response performance of yttria-stabilized zirconia based flame sensor

doi: 10.13700/j.bh.1001-5965.2019.0267
More Information
  • Corresponding author: ZHANG Rongchun, E-mail: zhangrongchun@buaa.edu.cn
  • Received Date: 31 May 2019
  • Publish Date: 20 Mar 2020
  • By the use of a muffle, the static response of the yttria-stabilized zirconia (YSZ) flame sensor to temperature was measured in the range of 873-1 523 K, and the static calibration curve and response characteristics of the sensor were obtained and analyzed. The results show that the linearity of the YSZ flame sensor is 12.88%; with 24 V excitation voltage, the average sensitivity is 10.02 mV/K; the indexes of hysteresis and repeatability are 2.13% and 2.22%, respectively; the interchangeability between different YSZ flame sensors is 1.22%; the static calibration curve of the sensor can be accurately fitted by the Boltzmann function with an error of less than±3.5%. The YSZ flame sensor has significant nonlinearity, high sensitivity, good precision and interchangeability, and the overall performance is good. Compared with thermocouples and ion-based flame sensors commonly used for flame detection, the output signal of the YSZ flame sensor in response to the flame temperature is steady and robust, which can effectively improve the accuracy and reliability of flame detection.

     

  • loading
  • [1]
    章德龙.超超临界火电机组培训系列教材:锅炉分册[M].北京:中国电力出版社, 2013:43.

    ZHANG D L.Training materials for ultra-supercritical thermal power unit:Boiler[M].Beijing:China Electric Power Press, 2013:43(in Chinese).
    [2]
    章素华.燃气轮机发电机组控制系统[M].北京:中国电力出版社, 2013:317-328.

    ZHANG S H.Control system for gas turbine generator unit[M].Beijing:China Electric Power Press, 2013:317-328(in Chinese).
    [3]
    谢军.航空控制工程新装备与新技术[M].北京:航空工业出版社, 2002:192.

    XIE J.New equipment and technology for aero control engineering[M].Beijing:Aviation Industry Press, 2002:192(in Chinese).
    [4]
    DOCQUIER N, CANDEL S.Combustion control and sensors:A review[J].Progress in Energy and Combustion Science, 2002, 28(2):107-150. doi: 10.1016/S0360-1285(01)00009-0
    [5]
    BALLESTER J, GARCÍA-ARMINGOL T.Diagnostic techniques for the monitoring and control of practical flames[J].Progress in Energy and Combustion Science, 2010, 36(4):375-411. doi: 10.1016/j.pecs.2009.11.005
    [6]
    ROMERO C, LI X, KEYVAN S, et al.Spectrometer-based combustion monitoring for flame stoichiometry and temperature control[J].Applied Thermal Engineering, 2005, 25(5):659-676. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=98c71c67998f48367a4e851dcade1235
    [7]
    MIYASATO M M, MCDONELL V G, SAMUELSEN G S.Active optimization of the performance of a gas-turbine combustor[J].Combustion Science and Technology, 2005, 177(9):1725-1745. doi: 10.1080/00102200590959396
    [8]
    XU L, YAN Y, CORNWELL S, et al.On-line fuel identification using digital signal processing and fuzzy inference techniques[J].IEEE Transactions on Instrumentation and Measurement, 2004, 53(4):1316-1320. doi: 10.1109/TIM.2004.830573
    [9]
    HUANG Y, YAN Y, RILEY G.Vision-based measurement of temperature distribution in a 500 kW model furnace using the two-colour method[J].Measurement:Journal of the International Measurement Confederation, 2000, 28(3):175-183. doi: 10.1016/S0263-2241(00)00010-5
    [10]
    KEARNEY S P.Hybrid fs/ps rotational cars temperature and oxygen measurements in the product gases of canonical flat flames[J].Combustion and Flame, 2015, 162(5):1748-1758. doi: 10.1016/j.combustflame.2014.11.036
    [11]
    RASMUSSEN C C, DHANUKA S K, DRISCOLL J F.Visualization of flameholding mechanisms in a supersonic combustor using PLIF[J].Proceedings of the Combustion Institute, 2007, 31(2):2505-2512.
    [12]
    GRISCH F, ATTAL-TRETOUT B, BRESSON A, et al.Investigation of a dynamic diffusion flame of H2 in air with laser diagnostics and numerical modeling[J].Combustion and Flame, 2004, 139(1):28-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f6e000d351520904c54f05ea33000920
    [13]
    BOLSHOV M A, KURITSYN Y A, ROMANOVSKII Y V.Tunable diode laser spectroscopy as a technique for combustion diagnostics[J].Spectrochimica Acta-Part B Atomic Spectroscopy, 2015, 106:45-66. doi: 10.1016/j.sab.2015.01.010
    [14]
    CLAUSSEN H, ULERICH N H, MOMIN Z, et al.Flame monitoring of a gas turbine combustor using a characteristic spectral pattern from a dynamic pressure sensor in the combustor: 9791150B2[P].2017-10-17.
    [15]
    CHORPENING B T, THORNTON J D, BENSON K J.Flame ionization sensor testing in a pressurized combustor[C]//Proceedings of the 4th IEEE Conference on Sensors 2005.Piscataway, NJ: IEEE Press, 2005: 987-990.
    [16]
    LI F Y, XU L J, DU M, et al.Ion current sensing-based lean blowout detection for a pulse combustor[J].Combustion and Flame, 2017, 176:263-271. doi: 10.1016/j.combustflame.2016.10.017
    [17]
    HU D, CAO Z, SUN S, et al.Dual-modality electrical tomography for flame monitoring[J].IEEE Sensors Journal, 2018, 18(21):8847-8854. doi: 10.1109/JSEN.2018.2868959
    [18]
    GARDINER D P, PUCHER G, ALLAN W D, et al.Flame-out detection for gas turbine engines based upon thermocouple signal analysis: GT2006-91080[R].New York: ASME, 2006.
    [19]
    ZHANG J, GUO X, JUNG Y G, et al.Lanthanum zirconate based thermal barrier coatings:A review[J].Surface and Coatings Technology, 2016, 323:18-29.
    [20]
    GAO J, DUAN F L, YU C, et al.Electrical Insulation of ceramic thin film on metallic aero-engine blade for high temperature sensor applications[J].Ceramics International, 2016, 42(16):19269-19275. doi: 10.1016/j.ceramint.2016.09.093
    [21]
    DUAN L, WENG H, JI Z, et al.A new high-temperature sensing device by making use of tbc thermistor for intelligent propulsion systems: AIAA-2018-5015[R].Reston: AIAA, 2018.
    [22]
    HU M, DUAN L, WENG H, et al.An easy way of high-temperature monitoring for intelligent propulsion systems via YSZ-based ceramic thermistor: AIAA-2018-4617[R].Reston: AIAA, 2018.
    [23]
    徐汉卿, 樊未军, 张荣春, 等.基于钇稳定二氧化锆阻温特性的火焰传感器[J].推进技术, 2019, 40(8):1902-1911. http://d.old.wanfangdata.com.cn/Periodical/tjjs201908026

    XU H Q, FAN W J, ZHANG R C, et al.Flame sensor based on resistance-temperature characteristic of yttria-stabilized zirconia[J].Journal of Propulsion Technology, 2019, 40(8):1902-1911(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201908026
    [24]
    熊姹, 范玮.应用燃烧诊断学[M].西安:西北工业大学出版社, 2014:73.

    XIONG C, FAN W.Applied combustion diagnostics[M].Xi'an:Northwestern Polytechnical University Press, 2014:73(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(590) PDF downloads(196) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return