Volume 46 Issue 3
Mar.  2020
Turn off MathJax
Article Contents
ZHANG Hua, BAI Junqiang, QIAO Lei, et al. An adaptive mesh refinement method based on immersed finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 588-597. doi: 10.13700/j.bh.1001-5965.2019.0269(in Chinese)
Citation: ZHANG Hua, BAI Junqiang, QIAO Lei, et al. An adaptive mesh refinement method based on immersed finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 588-597. doi: 10.13700/j.bh.1001-5965.2019.0269(in Chinese)

An adaptive mesh refinement method based on immersed finite element method

doi: 10.13700/j.bh.1001-5965.2019.0269
Funds:

National Natural Science Foundation of China 11802245

National Natural Science Foundation of China 11702284

More Information
  • Corresponding author: BAI Junqiang, E-mail:junqiang@nwpu.edu.cn
  • Received Date: 31 May 2019
  • Accepted Date: 27 Jul 2019
  • Publish Date: 20 Mar 2020
  • For the numerical simulation of fluid-structure interaction with moving boundary, a local Cartesian mesh adaptation method coupling flow field features and geometric features is developed based on immersed finite element method. This method overcomes the inaccuracy of simulating solid motion with a single adaptive indicator. In the coupling adaptation, the vorticity is used as the adaptive indicator factor for flow field, and the solid position is used as the indicator for the geometric feature to drive mesh adaptation. The advantages of the coupling adaptive strategy are verified by a numerical example, disk entrained in a lid-driven cavity flow, with volume conservation of the disk and some points' motion trajectory on disks. The computational results show that the volume conservation of the disk cannot be well guaranteed only by the adaptation based on flow characteristics; the trajectory tracking of the disk cannot be effectively achieved only by the geometry-based adaptation; but the coupling adaptation strategy in this paper can ensure the accuracy of the two indexes at the same time. When the overall computational degrees of freedom remain constant, the 2-norm of divergence of velocity can be reduced by one order of magnitude and the trajectory error 2-norm of the disk is reduced by two orders of magnitude.

     

  • loading
  • [1]
    PESKIN C.Flow patterns around heart valves:A numerical method[J].Journal of Computational Physics, 1972, 10(2):252-271. doi: 10.1016-0021-9991(72)90065-4/
    [2]
    BORAZJANI I, GE L, SOTIROPOULOS F.High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta[J].Annual Review of Biomedical Engineering, 2010, 38:326-344. doi: 10.1007/s10439-009-9807-x
    [3]
    SOTIROPOULOS F, BORAZJANI I.A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves[J].Medical & Biological Engineering & Computing, 2009, 47(3):245-256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7865c837a7ef45cf3536d0953847332e
    [4]
    ZHU L, PESKIN C S.Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method[J].Journal of Computational Physics, 2002, 179(2):452-468. doi: 10.1006-jcph.2002.7066/
    [5]
    ZHANG J, CHILDRESS S, LIBCHABER A, et al.Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind[J].Nature, 2000, 408(6814):835-839. doi: 10.1038/35048530
    [6]
    MITTAL R, SESHADRI V, UDAYKUMAR H S.Flutter, tumble and vortex induced autorotation[J].Theoretical and Computational Fluid Dynamics, 2004, 17(3):165-170. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023002083/
    [7]
    GOLDSTEIN D, HANDLER R, SIROVICH L.Modeling a no-slip flow boundary with an external force field[J].Journal of Computational Physics, 1993, 105(2):354-366. http://cn.bing.com/academic/profile?id=36cb56ed51ac65075edcfb7f3228b91f&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    GHIAS R, MITTAL R, DONG H.A sharp interface immersed boundary method for compressible viscous flows[J].Journal of Computational Physics, 2007, 225(1):528-533. http://cn.bing.com/academic/profile?id=5eafca1a14d515cfacd8fd1c87eab1a6&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    MITTAL R, DONG H.A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries[J].Journal of Computational Physics, 2008, 227(10):4825-4852. doi: 10.1016/j.jcp.2008.01.028
    [10]
    秦望龙, 吕宏强, 伍贻兆.基于混合网格的高阶间断有限元黏流数值解法[J].力学学报, 2013, 45(6):987-991. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201306020

    QIN W L, LV H Q, WU Y Z.High-order discontinuous Galerkin solution of N-S equations on hybrid mesh[J].Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6):987-991(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201306020
    [11]
    于剑, 阎超.Navier-Stokes方程间断Galerkin有限元方法研究[J].力学学报, 2010, 42(5):962-970. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201605012

    YU J, YAN C.Study on discontinuous Galerkin method for Navier-Stokes equations[J].Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5):962-970(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201605012
    [12]
    BOFFI D, GASTALDI L.A finite element approach for the immersed boundary method[J].Computers and Structures, 2003, 81(8-11):491-501. doi: 10.1016/S0045-7949(02)00404-2
    [13]
    WANG X, LIU W K.Extended immersed boundary method using FEM and RKPM[J].Computer Methods in Applied Mechanics and Engineering, 2004, 193(12-14):1305-1321. doi: 10.1016/j.cma.2003.12.024
    [14]
    ZHANG L, GERSTENBERGER A, WANG X, et al.Immersed finite element method[J].Computer Methods in Applied Mechanics and Engineering, 2004, 193(21-22):2051-2067. doi: 10.1016/j.cma.2003.12.044
    [15]
    HELTAI L, FRANCESCO C.Variational implementation of immersed finite element methods[J].Computer Methods in Applied Mechanics and Engineering, 2012, 229-232:110-127. doi: 10.1016/j.cma.2012.04.001
    [16]
    ROY S, HELTAI L, COSTANZO F.Benchmarking the immersed finite element method for fluid-structure interaction problems[J].Computers and Mathematics with Applications, 2015, 69(10):1167-1188. doi: 10.1016/j.camwa.2015.03.012
    [17]
    吴泽艳, 王立峰, 武哲.基于简单WENO-间断Galerkin的Euler方程自适应计算[J].北京航空航天大学学报, 2016, 42(4):806-814. doi: 10.13700/j.bh.1001-5965.2015.0237

    WU Z Y, WANG L F, WU Z.Adaptive simple WENO limiter-discontinuous Galerkin method for Euler equations[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4):806-814(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0237
    [18]
    BERGER M J, OLIGER J.Adaptive mesh refinement for hyperbolic partial differential equations[J].Journal of Computational Physics, 1984, 53(3):484-512. doi: 10.1016-0021-9991(84)90073-1/
    [19]
    ABGRALL R, BEAUGENDRE H, DOBRZYNSKI C.An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques[J].Journal of Computational Physics, 2014, 257:83-101. doi: 10.1016/j.jcp.2013.08.052
    [20]
    PENG B, ZHOU C H.An approach of dynamic mesh adaptation for simulating 3-dimensional unsteady moving-immersed-boundary flows[J].International Journal for Numerical Methods in Fluids, 2018, 87(4):180-201. doi: 10.1002/fld.4486
    [21]
    XU L C, TIAN F B, YOUNG J, et al.A novel geometry-adaptive Cartesian grid based immersed boundary-lattice Boltzmann method for fluid-structure interactions at moderate and high Reynolds numbers[J].Journal of Computational Physics, 2018, 375:22-56. doi: 10.1016/j.jcp.2018.08.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(4)

    Article Metrics

    Article views(626) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return