Citation: | YU Jin, WANG Song, LIU Yong, et al. Trim analysis method of helicopter based on CFD/CSD loose coupling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 941-951. doi: 10.13700/j.bh.1001-5965.2019.0329(in Chinese) |
In this paper, a helicopter trim calculation method based on the CFD/CSD loose coupling strategy is proposed. The CSD solver and rotor CFD solver use the blade elastic axis and pitch axis as media to exchange aerodynamic load and response data through linear interpolation method. In the coupling strategy of this paper, CFD and CSD solver operate in the time domain respectively, and exchange the data once per revolution. The aerodynamic force calculated by CFD solver is used to correct the aerodynamic input of aeroelastic analysis in trim calculation, until the trim parameters and CFD aerodynamic force no longer change in the iterative process, and the coupling trim solutions are obtained. In this paper, the SA349/2 helicopter is taken as an example to calculate the forward flight state. The results show that the coupling method in this paper converges rapidly and has good stability. The comparison between the calculation results and the measured flight values verifies the effectiveness of the proposed method, and it has a good ability to capture the aerodynamic curve of blade and the blade vortex distraction.
[1] |
PETERS D A, BARWEY D.A general theory of rotorcraft trim[J].Mathematical Problems in Engineering, 1996, 2(1):1-34.
|
[2] |
POTSDAM M, YEO H, JOHNSON W.Rotor airloads prediction using loose aerodynamic/structural coupling[J].Journal of Aircraft, 2006, 43(3):732-742. doi: 10.2514/1.14006
|
[3] |
TUNG C, CARADONNA F X, JOHNSON W.The prediction of transonic flows on an advancing rotor[J].Journal of the American Helicopter Society, 1986, 31(3):4-9. doi: 10.4050/JAHS.31.3.4
|
[4] |
SERVERA G, BEAUMIER P, COSTES M.A weak coupling method between the dynamics code HOST and the 3D unsteady Euler code WAVES[J].Aerospace Science and Technology, 2001, 5(6):397-408. doi: 10.1016/S1270-9638(01)01120-8
|
[5] |
DATTA A, SITARAMAN J, CHOPRA I, et al.CFD/CSD prediction of rotor vibratory loads in high-speed flight[J].Journal of Aircraft, 2006, 43(6):1698-1709. doi: 10.2514/1.18915
|
[6] |
王海.计入桨叶结构弹性的新型桨尖旋翼流场数值模拟研究[D].南京: 南京航空航天大学, 2010.
WANG H.Numerical simulation of flow field of a new type of propeller tip rotor with structural elasticity[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
|
[7] |
王俊毅, 招启军.基于CFD/CSD方法的旋翼载荷预测与结构参数影响研究[C]//第二十九届全国直升机年会, 2013: 63-72.
WANG J Y, ZHAO Q J.The rotor load prediction and structural parameter influence study based on CFD/CSD coupling[C]//Proceedings of the 29th Annual China Helicopter Conference, 2013: 63-72(in Chinese).
|
[8] |
肖宇, 徐国华, 招启军.基于非惯性系的悬停状态旋翼CFD/CSD耦合气动分析[J].空气动力学学报, 2014, 32(5):675-681. http://www.cnki.com.cn/Article/CJFDTotal-KQDX201405017.htm
XIAO Y, XU G H, ZHAO Q J.Aerodynamic analysis of rotor in hover state of the non-inertial system based on CFD/CSD coupling[J].Acta Aerodynamica Sinica, 2014, 32(5):675-681(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-KQDX201405017.htm
|
[9] |
李建东.基于CFD/CSD耦合的旋翼振动载荷预估方法研究[D].南京: 南京航空航天大学, 2015.
LI J D.The rotor vibratory load predciton based on CFD/CSD coupling[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
|
[10] |
黄道博.直升机稳态飞行状态旋翼振动载荷的CFD/CSD耦合分析方法[D].南京: 南京航空航天大学, 2016.
HUANG D B.The rotor vibratory load predciton based on CFD/CSD coupling in steady flight[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
|
[11] |
约翰D·安德森.计算流体力学基础及其应用[M].吴颂平, 刘赵森, 译.北京: 机械工业出版社, 2007.
ANDERSON J D.Fundamentals of computational fluid dynamics and its applications [M].WU S P, LIU Z S, translated.Beijing: China Machine Press, 2007(in Chinese).
|
[12] |
HODGES D H, DOWELL E.Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades: NASA TN D-7818[R].Washington, D.C.: NASA, 1974.
|
[13] |
BIR G, CHOPRA I.University of maryland advanced rotor code(UMARC)theory manual: UM-AERO 94-18[R].Maryland: University of Maryland, 1994.
|
[14] |
殷启波.先进几何外形复合材料旋翼桨叶弹性剪裁方法研究[D].南京: 南京航空航天大学, 2014.
YIN Q B.Study on the elastic tailoring of advanced geometric shape composite rotor blade [D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
|
[15] |
YAMAUCHI G K, HEFFERNAN R M, GAUBERT M.Correlation of SA349/2 helicopter flight test data with a comprehensive rotorcraft model[J].Journal of the American Helicopter Society, 1987, 33(2):31-42.
|
[16] |
YAMAUCHI G, HEFFERNAN R, GAUBERT M.Hub and blade structural loads measurements of an SA 349/2 helicopter: NASA TM 101040[R].Washington, D.C.: NASA, 1988.
|
[1] | ZHANG Fan, DING Mingsong, CHEN Jianqiang, LIU Wan, JIANG Tao, LI Peng, JIANG Jun. Interactive design and implementation of HPCC-oriented industrial CFD software[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0810 |
[2] | LIANG J H,ZHANG X Y,ZHAO Q J. Aerodynamic interference characteristics of a new compound configuration helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):922-932 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0084. |
[3] | GUO Wenjuan, LI Qiang, ZHOU Ling. A CFD grid uncertainty analysis method for hypersonic aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0099 |
[4] | LYU Yuzhu. Study on Flight Characteristics and Speed Limit of Helicopter with Slung Load[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0563 |
[5] | TAN J F,XING X B,CUI Z,et al. Investigation on aerodynamics of a helicopter approaching an active control deck[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2206-2217 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0615. |
[6] | TAN J F,YANG Y X,ZHANG W G,et al. Influence of crosswind on helicopter brownout[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3111-3122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0794. |
[7] | LI Hao, ZHANG Xiao-rong, SUN Yan, DENG Yan-zeng, ZHU Zhi-mao. Automatic selection algorithm of interpolation points on aeroelastic coupling interface[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0079 |
[8] | GUO S N,SONG W,XIANG N L,et al. Dynamic characteristics of turbine flowmeter based on CFD simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1904-1911 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0594. |
[9] | CHENG Hu-hua, WU Shuai, JIANG Zhu-hui, ZHANG Ru-cai. Research on maximum aerodynamic load prediction method during launch vehicle launch[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0237 |
[10] | DUAN B,YANG S,LI A J. Design of LPV control law for unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):879-890 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0340. |
[11] | YANG Z J,WANG G,ZHAO R J,et al. Dynamic analysis of deployment impact of trim-wing mechanism of Mars entry capsules[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):422-429 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0234. |
[12] | ZHOU K,CHEN W J,CHEN W H,et al. Extended subtraction speech enhancement based on cubic spline interpolation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2826-2834 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0744. |
[13] | YANG K L,HAN D. Influence of rotor/wing aerodynamic interference on performance of compound helicopters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1761-1771 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0561. |
[14] | SONG Z R,ZHAO J C,YANG W F. Boundary protection control method of helicopter power system based on flight test analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):100-105 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0431. |
[15] | ZHANG X C,WAN Z Q,YAN D. Optimal active twist control for rotor vibration reduction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3397-3408 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0105. |
[16] | JIN Z B,LI D C,SUN Y,et al. Man-machine cooperative control of helicopter and flight experimental validation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3022-3030 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0038. |
[17] | TAN J F,HAN S,WANG C,et al. Accelerated computational method of helicopter brownout based on DEM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1352-1361 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0450. |
[18] | ZHOU C C,LIU H W,HE B M,et al. An efficient spatial interpolation method involving position shading[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1278-1286 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0443. |
[19] | XU Y T,TAN D L,YANG C. Study on tail-slap load characteristics of high-speed projectile based on CFD/CSD coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2539-2546 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0939. |
[20] | HUANG Mingqi, WANG Liangquan, YUAN Honggang, PENG Xianmin, ZHANG Guichuan. Icing wind tunnel investigation of helicopter rotor model in forward flight state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 929-936. doi: 10.13700/j.bh.1001-5965.2020.0703 |