LI Yong-yi, WANG Nan, WU Xin-yue, et al. Research on Non-Cooperative Automatic Docking Strategy of Umbilical Connector for Launch Vehicle under Fluctuating Wind Load[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0506(in Chinese)
Citation: ZHENG Lei, HU Weiduo, LIU Changet al. Large crater identification method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 994-1004. doi: 10.13700/j.bh.1001-5965.2019.0342(in Chinese)

Large crater identification method based on deep learning

doi: 10.13700/j.bh.1001-5965.2019.0342
Funds:

National Natural Science Foundation of China 61703017

More Information
  • Corresponding author: HU Weiduo, E-mail:08109@buaa.edu.cn
  • Received Date: 28 Jun 2019
  • Accepted Date: 29 Sep 2019
  • Publish Date: 20 May 2020
  • Craters are the most significant topographic features on the surface of celestial bodies. The traditional method of craters identification is mainly to study the dichotomy of positive and negative samples of small craters, with low efficiency and accuracy. This paper takes large craters under the macroscopic view of the planet as the research object, combines the knowledge of digital image processing and neural network, creates a crater sample library of different data sources to study the influence of data source on network model generalization ability, and proposes a more efficient crater multi-classification identification method. Based on the Non-Maximum Suppression (NMS) algorithm, a higher precision crater detection algorithm is proposed. Through parameter optimization and experimental verification, the multi-scale and multi-classification craters automatic recognition network framework based on deep learning constructed in this paper achieves a high accuracy rate, with the recognition rate up to 0.985 on homologous verification set and 0.863 on heterogeneous verification set, and effectively improves the redundancy of detection box and false detection in target detection.

     

  • [1]
    GROUP C A T W, ARVIDSON R E, BOYCE J, et al.Standard techniques for presentation and analysis of crater size-frequency data[J].Icarus, 1979, 37(2):467-474. doi: 10.1016/0019-1035(79)90009-5
    [2]
    PALAFOX L F, HAMILTON C W, SCHEIDT S P, et al.Automated detection of geological landforms on Mars using convolutional neural networks[J].Computers & Geosciences, 2017, 101:48-56.
    [3]
    CHENG Y, JOHNSON A E, MATTHIES L H, et al.Optical landmark detection for spacecraft navigation[C]//Proceedings of the 13th Annual AAS/AIAA Space Flight Mechanics Meeting, 2003: 1785-1803.
    [4]
    SAWABE Y, MATSUNAGA T, ROKUGAWA S.Automated detection and classification of lunar craters using multiple approaches[J].Advances in Space Research, 2006, 37(1):21-27. doi: 10.1016/j.asr.2005.08.022
    [5]
    KIM J R, MULLER J, VAN GASSELT S, et al.Automated crater detection, a new tool for Mars cartography and chronology[J].Photogrammetric Engineering & Remote Sensing, 2005, 71(10):1205-1217.
    [6]
    冯军华, 崔祜涛, 崔平远, 等.行星表面陨石坑检测与匹配方法[J].航空学报, 2010, 31(9):1858-1863.

    FENG J H, CUI H T, CUI P Y, et al.Autonomous crater detection and matching on planetary surface[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1858-1863(in Chinese).
    [7]
    DING M, CAO Y F, WU Q X.Method of passive image based crater autonomous detection[J].Chinese Journal of Aeronautics, 2009, 22(3):301-306. doi: 10.1016/S1000-9361(08)60103-X
    [8]
    CRACKNELL M J, READING A M.Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information[J].Computers & Geosciences, 2014, 63:22-33.
    [9]
    CHRISTOFF N, MANOLOVA A, JORDA L, et al.Morphological crater classification via convolutional neural network with application on MOLA data[C]//Advances in Neural Networks and Applications 2018, 2018: 1-5.
    [10]
    BARATA T, ALVES E I, SARAIVA J, et al.Automatic recognition of impact craters on the surface of Mars[C]//International Conference Image Analysis and Recognition.Berlin: Springer, 2004: 489-496.
    [11]
    BOUKERCHA A, AL-TAMEEMI A, GRUMPE A, et al.Automatic crater recognition using machine learning with different features and their combination[C]//Lunar and Planetary Science Conference, 2014, 45: 2842.
    [12]
    SILBURT A, ALI-DIB M, ZHU C, et al.Lunar crater identification via deep learning[J].Icarus, 2019, 317:27-38. doi: 10.1016/j.icarus.2018.06.022
    [13]
    WRIGHT E.SVS: Moon phase and libration, 2018[EB/OL].(2019-01-28)[2019-06-12].
    [14]
    HEAD J W, ADAMS J B, MCCORD T B, et al.Regional stratigraphy and geologic history of Mare Crisium[C]//Mare Crisium: The View From Luna 24, 1978: 43-74.
    [15]
    WATTERS T R, KONOPLIV A S.The topography and gravity of Mare Serenitatis:Implications for subsidence of the mare surface[J].Planetary and Space Science, 2001, 49(7):743-748. doi: 10.1016/S0032-0633(01)00007-1
    [16]
    SOLOMON S C, HEAD J W.Vertical movement in mare basins:Relation to mare emplacement, basin tectonics, and lunar thermal history[J].Journal of Geophysical Research: Solid Earth, 1979, 84(B4):1667-1682. doi: 10.1029/JB084iB04p01667
    [17]
    SCHULTZ P H, STAID M I, PIETERS C M.Lunar activity from recent gas release[J].Nature, 2006, 444(7116):184-186. doi: 10.1038/nature05303
    [18]
    KRVGER T, VAN DER BOGERT C H, HIESINGER H.Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits[J].Icarus, 2016, 273:164-181. doi: 10.1016/j.icarus.2016.02.018
    [19]
    ZHANG K, ZUO W, CHEN Y, et al.Beyond a Gaussian denoiser:Residual learning of deep CNN for image denoising[J].IEEE Transactions on Image Processing, 2017, 26(7):3142-3155. doi: 10.1109/TIP.2017.2662206
    [20]
    DONG C, LOY C C, HE K, et al.Image super-resolution using deep convolutional networks[J].IEEE transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2):295-307.
    [21]
    LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2015: 3431-3440.
    [22]
    MALTEZOS E, DOULAMIS N, DOULAMIS A, et al.Deep convolutional neural networks for building extraction from orthoimages and dense image matching point clouds[J].Journal of Applied Remote Sensing, 2017, 11(4):42620.
    [23]
    ZHANG N, DONAHUE J, GIRSHICK R, et al.Part-based R-CNNs for fine-grained category detection[C]//European Conference on Computer Vision.Berlin: Springer, 2014: 834-849.
    [24]
    黄洁, 姜志国, 张浩鹏, 等.基于卷积神经网络的遥感图像舰船目标检测[J]北京航空航天大学学报, 2017, 43(9):1841-1848. doi: 10.13700/j.bh.1001-5965.2016.0755

    HUAGN J, JIANG Z G, ZHANG H P, et al.Ship object detection in remote sensing images using convolutional neural networks[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9):1841-1848(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0755
    [25]
    JIAO L, LIANG M, CHEN H, et al.Deep fully convolutional network-based spatial distribution prediction for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5585-5599. doi: 10.1109/TGRS.2017.2710079
    [26]
    韩京冶, 许福, 陈志泊, 等.一种基于深度学习的交互式电话号码识别方法[J].北京航空航天大学学报, 2018, 44(5):1074-1080. doi: 10.13700/j.bh.1001-5965.2017.0357

    HAN J Y, XU F, CHEN Z B, et al.A deep learning based interactive recognition method for telephone numbers[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5):1074-1080(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0357
    [27]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
    [28]
    RIEDMILLER M, BRAUN H.A direct adaptive method for faster backpropagation learning: The RPROP algorithm[C]//Proceedings of the IEEE International Conference on Neural Networks.Piscataway: IEEE Press, 1993: 586-591.
    [29]
    ZEILER M D, FERGUS R.Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision.Berlin: Springer, 2014: 818-833.
    [30]
    ZEILER M D.ADADELTA: An adaptive learning rate method[EB/OL].(2012-12-22)[2019-06-20].
    [31]
    KINGMA D P, BA J.Adam: A method for stochastic optimization[EB/OL].(2014-12-22)[2019-06-20].
    [32]
    TIELEMAN T, HINTON G.RMSPROP:Divide the gradient by a running average of its recent magnitude[J].Neural Networks for Machine Learning, 2012, 4:26-30.
  • Relative Articles

    [1]BAI C P,ZHANG S Y,ZHANG X,et al. Spaceborne particle identification platform and application based on convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1313-1323 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0171.
    [2]ZHU J Z,WANG C,LI X K,et al. A deep reinforcement learning based on discrete state transition algorithm for solving fuzzy flexible job shop scheduling problem[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1385-1394 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0211.
    [3]MA S G,LI N B,HOU Z Q,et al. Object detection algorithm based on DSGIoU loss and dual branch coordinate attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1085-1095 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0192.
    [4]LU S Q,GUAN F X,LAI H T,et al. Two-stage underwater image enhancement method based on convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):321-332 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1003.
    [5]YANG B,WEI X,YU H,et al. Martian terrain feature extraction method based on unsupervised contrastive learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1842-1849 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0525.
    [6]WANG J,LI P T,ZHAO R F,et al. A person re-identification method for fusing convolutional attention and Transformer architecture[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):466-476 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0456.
    [7]HOU Z Q,MA J Y,HAN R X,et al. A fast long-term visual tracking algorithm based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2391-2403 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0645.
    [8]LI H G,WANG Y F,YANG L C. Meta-learning-based few-shot object detection for remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2503-2513 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0637.
    [9]ZHANG J H,ZHAO W,WANG Z C,et al. UAV pedestrian tracking algorithm based on detection and re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2538-2546 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0675.
    [10]LI Y H,YU H K,MA D F,et al. Improved transfer learning based dual-branch convolutional neural network image dehazing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):30-38 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0253.
    [11]JIANG Y,CHEN M Y,YUAN Q,et al. Departure flight delay prediction based on spatio-temporal graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1044-1052 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0415.
    [12]ZHANG Y Z,LI W B,ZHENG T T. Inverted residual target detection algorithm based on LGC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1287-1293 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0452.
    [13]CHEN C,ZHAO W. Remote sensing target detection based on dynanic feature selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):702-709 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0300.
    [14]DAI P Z,LIU X,ZHANG X,et al. An iterative pedestrian detection method sensitive to historical information features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2493-2500 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0665.
    [15]ZHOU H,HOU Q Y,BIAN C J,et al. An infrared small target detection network under various complex backgrounds realized on FPGA[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):295-310 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0221.
    [16]SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130.
    [17]SU Kaiqi, YAN Weiqing, XU Jindong. 3D object detection based on multi-path feature pyramid network for stereo images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1487-1494. doi: 10.13700/j.bh.1001-5965.2021.0525
    [18]LI Zheyang, ZHANG Ruyi, TAN Wenming, REN Ye, LEI Ming, WU Hao. A graph convolution network based latency prediction algorithm for convolution neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2450-2459. doi: 10.13700/j.bh.1001-5965.2021.0149
    [19]FAN Tao, SUN Tao, LIU Hu. Hot spot detection algorithm of photovoltaic module based on attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1304-1313. doi: 10.13700/j.bh.1001-5965.2021.0457
    [20]ZENG Sheng, ZHU Fengchao, YANG Jian. A new RF fingerprint identification method based on preamble of signal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2566-2575. doi: 10.13700/j.bh.1001-5965.2021.0164
  • Cited by

    Periodical cited type(8)

    1. 吴鹏,穆荣军,邓雁鹏,崔乃刚. 月球探测器鲁棒环形山检测及光学导航方法. 哈尔滨工程大学学报. 2024(02): 238-246 .
    2. 刘晓慧,刘世瑛,刘少然,王镓,钱雪茹. 基于阴影特征的月面凹障碍自动识别检测方法. 深空探测学报(中英文). 2023(06): 659-666 .
    3. 熊月容,康志伟. 基于快照集成卷积神经网络的陨石坑图像分类识别. 中国科技论文在线精品论文. 2022(01): 104-111 .
    4. 肖扬,李帅,王光泽,邵巍,姚文龙. 小天体导航陆标深度学习预测框匹配算法. 深空探测学报(中英文). 2022(04): 400-406 .
    5. 钱洲元,贺亮,张瀚墨,胡阳修,曹涛. 基于灰度特征与几何约束的月面陨石坑自动提取方法. 载人航天. 2021(02): 158-168 .
    6. 王光泽,邵巍,郗洪良,姚文龙,黄翔宇. 小天体表面纹理曲线精准匹配算法. 深空探测学报(中英文). 2021(03): 306-314 .
    7. 花玮,顾梅花,李立瑶,崔琳. 改进SOLOv2的服装图像分割算法. 纺织高校基础科学学报. 2021(04): 74-81 .
    8. 胡涛,贺亮,曹涛,韩宇,张翰墨. 行星陨石坑检测算法研究综述. 载人航天. 2020(05): 656-663 .

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.1 %FULLTEXT: 17.1 %META: 77.4 %META: 77.4 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.3 %其他: 14.3 %其他: 0.4 %其他: 0.4 %China: 0.1 %China: 0.1 %India: 0.3 %India: 0.3 %Seattle: 0.1 %Seattle: 0.1 %Sofia: 0.3 %Sofia: 0.3 %[]: 0.3 %[]: 0.3 %上海: 0.6 %上海: 0.6 %东京: 0.3 %东京: 0.3 %东莞: 0.1 %东莞: 0.1 %九江: 0.1 %九江: 0.1 %伊利诺伊州: 0.2 %伊利诺伊州: 0.2 %伦敦: 0.1 %伦敦: 0.1 %佛山: 0.1 %佛山: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 5.9 %北京: 5.9 %十堰: 0.3 %十堰: 0.3 %华盛顿州: 0.1 %华盛顿州: 0.1 %南京: 0.5 %南京: 0.5 %南宁: 0.2 %南宁: 0.2 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %卡拉奇: 0.1 %卡拉奇: 0.1 %卡纳塔克: 0.1 %卡纳塔克: 0.1 %吕梁: 0.3 %吕梁: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大阪: 0.1 %大阪: 0.1 %天津: 1.5 %天津: 1.5 %奥斯陆: 0.1 %奥斯陆: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.1 %安康: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.5 %宣城: 0.5 %崇左: 0.1 %崇左: 0.1 %常州: 0.5 %常州: 0.5 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.7 %库比蒂诺: 0.7 %弗吉: 0.1 %弗吉: 0.1 %张家口: 1.2 %张家口: 1.2 %悉尼: 0.1 %悉尼: 0.1 %成都: 0.1 %成都: 0.1 %扬州: 0.7 %扬州: 0.7 %新乡: 0.1 %新乡: 0.1 %新德里: 0.1 %新德里: 0.1 %昆明: 0.4 %昆明: 0.4 %曼谷: 0.1 %曼谷: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.5 %杭州: 0.5 %武汉: 0.6 %武汉: 0.6 %氹仔: 1.1 %氹仔: 1.1 %江门: 0.1 %江门: 0.1 %沃思堡: 0.1 %沃思堡: 0.1 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.1 %海口: 0.1 %淄博: 0.3 %淄博: 0.3 %深圳: 13.4 %深圳: 13.4 %温州: 0.3 %温州: 0.3 %湖州: 0.2 %湖州: 0.2 %漯河: 3.1 %漯河: 3.1 %澳门: 0.3 %澳门: 0.3 %澳门特别行政区: 0.2 %澳门特别行政区: 0.2 %珠海: 0.2 %珠海: 0.2 %石家庄: 1.4 %石家庄: 1.4 %芒廷维尤: 12.6 %芒廷维尤: 12.6 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.1 %苏州: 0.1 %荆州: 0.2 %荆州: 0.2 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.1 %襄阳: 0.1 %西宁: 26.7 %西宁: 26.7 %西安: 0.2 %西安: 0.2 %诺伊达: 0.3 %诺伊达: 0.3 %贵阳: 0.1 %贵阳: 0.1 %运城: 0.3 %运城: 0.3 %连云港: 0.1 %连云港: 0.1 %迪拜: 0.1 %迪拜: 0.1 %通化: 0.1 %通化: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.2 %郑州: 1.2 %重庆: 0.2 %重庆: 0.2 %长春: 0.1 %长春: 0.1 %长沙: 1.2 %长沙: 1.2 %阿什本: 0.1 %阿什本: 0.1 %阿伯里斯特威斯: 0.2 %阿伯里斯特威斯: 0.2 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %青岛: 0.5 %青岛: 0.5 %香港: 0.1 %香港: 0.1 %黄石: 0.1 %黄石: 0.1 %其他其他ChinaIndiaSeattleSofia[]上海东京东莞九江伊利诺伊州伦敦佛山加利福尼亚州北京十堰华盛顿州南京南宁南昌南通卡拉奇卡纳塔克吕梁哈尔滨嘉兴大阪天津奥斯陆宁波安康宜春宣城崇左常州广州库比蒂诺弗吉张家口悉尼成都扬州新乡新德里昆明曼谷朝阳杭州武汉氹仔江门沃思堡沈阳洛阳济南海口淄博深圳温州湖州漯河澳门澳门特别行政区珠海石家庄芒廷维尤芝加哥苏州荆州衡阳衢州襄阳西宁西安诺伊达贵阳运城连云港迪拜通化邯郸郑州重庆长春长沙阿什本阿伯里斯特威斯阿姆斯特丹青岛香港黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(9)

    Article Metrics

    Article views(1628) PDF downloads(1254) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return