Liu Nana, Li Jingwen, Li Ninget al. Unsupervised classification approach based on graph-segment for multispectral remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 544-546. (in Chinese)
Citation: DU Siliang, FENG Chen, TANG Zhengfeiet al. Numerical simulation and analysis of aerodynamic characteristics of fan-wing airfoil with leading edge winglet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 870-882. doi: 10.13700/j.bh.1001-5965.2019.0356(in Chinese)

Numerical simulation and analysis of aerodynamic characteristics of fan-wing airfoil with leading edge winglet

doi: 10.13700/j.bh.1001-5965.2019.0356
Funds:

China Postdoctoral Science Foundation 2018M642241

Equipment Pre-research Key Laboratory Foundation 61422201180510

Rotor Aerodynamics Key Laboratory Foundation RAL20190203

More Information
  • Corresponding author: DU Siliang, E-mail: kjofchina@qq.com
  • Received Date: 03 Jul 2019
  • Accepted Date: 11 Oct 2019
  • Publish Date: 20 May 2020
  • The generation of lift and thrust mainly depends on the formation of low-pressure vortices above the arc groove on the leading edge of the fan-wing, which makes the lift and thrust have a strong coupling relationship. How to decouple and control the lift and thrust is the key to the further engineering application of the fan-wing. When the geometric parameters of the fan-wing airfoil are determined, the leading edge opening angle has the greatest influence on the aerodynamic performance. Therefore, the method of installing leading edge winglets on the leading edge of a base fan-wing airfoil was considered to change the opening angle of the leading edge. By means of numerical simulation, the effects of single, double and three leading-edge winglets on lift and thrust of the fan at different installation angles, inflow velocities and angles of attack are compared and analyzed. The results show that the angle control of the leading edge winglet installation angle can not only improve the lift and thrust of the fan-wing, but also control the strength and position of the low-pressure vortices to meet the requirements of active control of the aerodynamic force of the fan-wing, so the attitude control of the fan-wing aircraft can be realized.

     

  • [1]
    PEEBLES P. Aerodynamic lift generating device: US Patent 527229[P].2003-03-04.
    [2]
    孟琳, 叶永强, 李楠.扇翼飞行器的研究进展与应用前景[J].航空学报, 2015, 36(8):2651-2661.

    MENG L, YE Y Q, LI N.Research progress and application prospects of fan-wing aircraft[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2651-2661(in Chinese).
    [3]
    LOUIS G, MARCO M, GIUSEPPE Q, et al.Aerodynamic optimization of cyclorotors[J].Aircraft Engineering and Aerospace Technology: An International Journal, 2016, 88(2):215-231.
    [4]
    FORESHAW S.Wind tunnel investigation of the new fan-wing design[D].London: Imperial College, 1999.
    [5]
    ASKARI S, SHOJAEEFARD M H.Shape optimization of the airfoil comprising a cross flow fan[J].Aircraft Engineering and Aerospace Technology: An International Journal, 2009, 81(5):407-415.
    [6]
    DUDDEMPUDI D, YAO Y, EDMONDSON D, et al.Computational study of flow over generic fan-wing airfoil[J].Aircraft Engineering and Aerospace Technology: An International Journal, 2007, 79(3):238-244.
    [7]
    KUMMER J D, DANG T Q.Hight-lift propulsive with integrated cross flow fan[J].Journal of Aircraft, 2006, 43(4):1059-1068. doi: 10.2514/1.17610
    [8]
    BAYINDIR H S, GUILLERMO P.Analysis of the flow field around the wing section of a fanwing aircraft under various flow conditions: AIAA-2005-1936[R].Reston: AIAA, 2015.
    [9]
    庞冲.扇翼飞行器气动原理理论研究[D].南京: 南京航空航天大学, 2015.

    PANG C.Theoretical research on aerodynamic principle of the fan-wing aircraft[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
    [10]
    吴浩东.风扇翼内部偏心涡特性研究[D].南京: 南京航空航天大学, 2012.

    WU H D.Research on the characteristic of the eccentric vortex in the fanwing[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [11]
    冯衬.前缘弧形段小翼及开槽设计对扇翼气动性能影响分析[D].南京: 南京航空航天大学, 2015.

    FENG C.The analysis of aerodynamic performance of the flap and slotted design on the front arc segment of fan-wing[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
    [12]
    雷乾勇, 朱清华.风扇翼翼型气动特性研究[J].南京航空航天大学学报, 2016, 48(4):509-515.

    LEI Q Y, ZHU Q H.Aerodynamic characteristics of fanwing airfoil based on CFD method[J].Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(4):509-515(in Chinese).
    [13]
    张银辉.风扇翼非定常流动的数值分析[D].南京: 南京航空航天大学, 2011.

    ZHANG Y H.Numerical analysis of fan-wing unsteady flow[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
    [14]
    杜思亮, 芦志明, 唐正飞.扇翼飞行器翼型附面层控制数值模拟[J].航空学报, 2016, 37(6):1783-1791.

    DU S L, LU Z M, TANG Z F.Numerical simulation research on the boundary control method of the fanwing's airfoil[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1783-1791(in Chinese).
    [15]
    刘向楠.扇翼设计参数及翼面形状气动优化研究[D].南京: 南京航空航天大学, 2015.

    LIU X N.Research on the aerodynamic optimization of design parameters and airfoil of fanwing[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
    [16]
    杜思亮, 唐正飞, 赵文静, 等.纵列式双扇翼气动特性数值模拟与试验[J].北京航空航天大学学报, 2018, 44(6):1164-1175. https://bhxb.buaa.edu.cn/CN/abstract/abstract14498.shtml

    DU S L, TANG Z F, ZHAO W J, et al.Numerical simulation and test on aerodynamic characteristics of tandem fan wing[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6):1164-1175(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14498.shtml
    [17]
    杜思亮, 唐荣培, 唐正飞.扇翼气动特性试验研究[J].南京航空航天大学学报, 2017, 49(3):403-410.

    DU S L, TANG R P, TANG Z F.Experimental study on aerodynamic of fanwing[J].Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(3):403-410(in Chinese).
    [18]
    DU S L, TANG Z F, XU P, et al.Study on helicopter antitorque device based on cross-flow fan technology[J].International Journal of Aerospace Engineering, 2016, 2016:5396876.
  • Relative Articles

    [1]LYU Y Z,WAN H M,XU Y M. Dynamic stability analysis of a single-point hanging container[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):419-427 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0036.
    [2]LIANG J Z,PAN T Y,ZHENG M Z,et al. Model design and aerodynamic characteristic analysis of variable-amplitude flapping wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1735-1746 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0271.
    [3]ZHANG Fan, DING Mingsong, CHEN Jianqiang, LIU Wan, JIANG Tao, LI Peng, JIANG Jun. Interactive design and implementation of HPCC-oriented industrial CFD software[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0810
    [4]LI Zhi-qiang, WANG Yang, XIN Li-biao. Structural Design and Aerodynamic Performance Analysis of Gradient Hexagonal Deformable Wing Ribs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0669
    [5]LIU F Y,DENG T. Influence of dynamic behavior of supercooled large droplets on airfoil icing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):173-186 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0213.
    [6]YUAN Y,LIU J,YU J Q,et al. Aerodynamic layout optimization design of high-speed folding-wing vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3410-3416 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0849.
    [7]TANG Y X,LIU Y M,AN Y F,et al. Flow mechanism of horseshoe vortex suction control for compressor cascade[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1282-1291 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0461.
    [8]DU Q F,JING W X,GAO C S,et al. Dual-loop control of mass-actuated quadrotor UAV considering dynamic characteristics of moving mass[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):861-873 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0350.
    [9]HU Wenhua, LIU Wenju, WU Ruiqin, CHEN Sanya, FENG Jingjing, WU Xia. Model design and aerodynamic simulation of a fold-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0064
    [10]LI Z X,MA M Y,WU J H,et al. Model correction method for CFD numerical simulation under mixed aleatory and epistemic uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2343-2353 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0624.
    [11]GUO Wenjuan, LI Qiang, ZHOU Ling. A CFD grid uncertainty analysis method for hypersonic aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0099
    [12]SONG Ziyi, LI Yanjun, YU Li, LI Xixi. Coupling model analysis for aerodynamic performance of parafoil with maneuvers[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0558
    [13]WANG Y T,LAN Q S,ZHOU Z,et al. Design and aerodynamic analysis of blended wing body with variable camber technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1292-1307 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0493.
    [14]FENG Y W,ZHANG J L,XUE X F,et al. Structural design and analysis of leading edge slat interference trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):761-767 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0353.
    [15]YANG K L,HAN D. Influence of rotor/wing aerodynamic interference on performance of compound helicopters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1761-1771 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0561.
    [16]WANG R C,ZHANG G X,WANG X Y,et al. Aerodynamic performance analysis of supercritical airfoil with lower surface jet[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1671-1679 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0489.
    [17]XU Y T,TAN D L,YANG C. Study on tail-slap load characteristics of high-speed projectile based on CFD/CSD coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2539-2546 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0939.
    [18]LIN J Z,ZHOU L,WU P,et al. Rapid prediction technology of missile aerodynamic characteristics based on PINN model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2669-2678 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0738.
    [19]GUO S N,SONG W,XIANG N L,et al. Dynamic characteristics of turbine flowmeter based on CFD simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1904-1911 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0594.
    [20]JIA Y,YANG Y T,WU J H. Effect of powertrain arrangement on aerodynamic characteristics of blended-wing-body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1156-1165 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0370.
  • Cited by

    Periodical cited type(3)

    1. 王孝义,陈航,汪晟,孙承坤,邱晗,邱支振. 一种新型半转扇翼气动特性的数值分析. 推进技术. 2023(01): 130-141 .
    2. 程乐,李擎雯,田克琴,唐钰铭. 风力发电机械中机组叶片小翼三维场数值模拟研究. 机械与电子. 2023(10): 39-43 .
    3. 龙海斌,吴裕平. 无人直升机系留气动载荷CFD计算分析. 北京航空航天大学学报. 2021(09): 1765-1773 . 本站查看

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)

    Article Metrics

    Article views(868) PDF downloads(385) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return