Volume 46 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
SUN Yixuan, BAI Junqiang, LIU Jinlong, et al. Gust alleviation control for flying-wing UAV by control surface based on limited parameter variation rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1387-1397. doi: 10.13700/j.bh.1001-5965.2019.0435(in Chinese)
Citation: SUN Yixuan, BAI Junqiang, LIU Jinlong, et al. Gust alleviation control for flying-wing UAV by control surface based on limited parameter variation rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1387-1397. doi: 10.13700/j.bh.1001-5965.2019.0435(in Chinese)

Gust alleviation control for flying-wing UAV by control surface based on limited parameter variation rate

doi: 10.13700/j.bh.1001-5965.2019.0435
More Information
  • Corresponding author: BAI Junqiang, E-mail: junqiang@nwpu.edu.cn
  • Received Date: 12 Aug 2019
  • Accepted Date: 11 Nov 2019
  • Publish Date: 20 Jul 2020
  • The flying-wing UAV has problems such as low pitching inertia and weak longitudinal stability, and as a result, its gust alleviation characteristics are sensitive to the changes in flight parameters. Furthermore, the flying-wing UAV has multiple control surfaces, the control effects of different placements of control surfaces are generally various. Therefore, the Linear Parameter Varying (LPV) control law design considering parameter variation rate for gust alleviation of this kind of aircraft and the research on the effects of different control surface placements are of great significance. Combined with the parameter-dependent Lyapunov function method and the parameter-varying oblique projection reduction algorithm, an LPV gust alleviation controller considering both parameter variation rate and model reduction is constructed. Based on this method, the LPV gust alleviation controller is designed for the Mini-MUTT flying-wing UAV model, and the influence of different strategies of control surface placement on the control performance is studied. The result shows that the reduced-order model obtained by the parameter-varying oblique projection reduction algorithm can effectively represent the dynamic characteristics of the full-order model. The designed LPV controller can guarantee the effective alleviation of the gust in a wide speed range. In the strategy that single control surface is considered, the control effect of the outboard control surface is superior to that of the inboard one. In addition, the control effect of double control surfaces is better than that of the single one, but the energy of control input of double control surfaces is greater than that of the single one. As a result, the control effect and energy consumption should be considered comprehensively to determine the appropriate control strategy for specific problems in engineering application.

     

  • loading
  • [1]
    SOHRAB H.Multidisciplinary design optimization of a highly flexible aeroservoelastic wing[D].Toronto: University of Toronto, 2012.
    [2]
    OLDS S D.Modeling and LQR control of two-dimensional airfoil[D].Blacksbur: Virginia Polytechnic Institute and State University, 1997.
    [3]
    BAIL T R.A disturbance-rejection problem for a 2-d airfoil[D].Blacksbur: Virginia Polytechnic Institute and State University, 1997.
    [4]
    BARKER J M, BALAS G J.Comparing linear parameter-varying gain-scheduled control techniques for active flutter suppression[J].Journal of Guidance, Control, and Dynamics, 2000, 23(5):948-955. doi: 10.2514/2.4637
    [5]
    BALAS G J, CLAUDIA M, PETER J S.Robust aeroservoelastic control utilizing physics-based aerodynamic sensing[C]//AIAA Guidance, Navigation and Control Conference.Reston: AIAA, 2012: 4897-4907.
    [6]
    MCKENZIE J R.B-52 control configured vehicles ride control analysis and flight test: AIAA-1973-782[R].Reston: AIAA, 1973.
    [7]
    DISNEY T E.C-5A active load alleviation system[J].Journal of Spacecraft and Rockets, 1977, 14(2):81-86. doi: 10.2514/3.57164
    [8]
    WINTHER B A, SHIRLEY W A, HEIMBAUGH R M.Windtunnel investigation of active control technology applied to a DC-10 deribative: AIAA-1980-0771[R].Reston: AIAA, 1980.
    [9]
    KARPEL M, MOULIN B, FELDGUN V.Active alleviation of gust loads using special control surfaces: AIAA-2006-1833[R].Reston: AIAA, 2006.
    [10]
    许晓平, 周洲, 王军利.基于直接力控制的阵风响应及阵风减缓研究[J].空气动力学学报, 2012, 30(1):101-107. doi: 10.3969/j.issn.0258-1825.2012.01.018

    XU X P, ZHOU Z, WANG J L.Research on gust response and gust mitigation based on direct force control[J].Acta Aerodynamica Sinina, 2012, 30(1):101-107(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.01.018
    [11]
    杨俊斌, 吴志刚, 戴玉婷, 等.飞翼布局飞机阵风减缓主动控制风洞试验[J].北京航空航天大学学报, 2017, 43(1):184-192. doi: 10.13700/j.bh.1001-5965.2016.0079

    YANG J B, WU Z G, DAI Y T, et al.Flying wing layout aircraft gust mitigation active control wind tunnel test[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):184-192(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0079
    [12]
    陈磊, 吴志刚, 杨超, 等.多控制面机翼阵风减缓主动控制与风洞试验验证[J].航空学报, 2009, 30(12):2250-2256. doi: 10.3321/j.issn:1000-6893.2009.12.002

    CHEN L, WU Z G, YANG C, et al.Active control and wind tunnel test verif ication of multi-control surfaces wing for gust alleviation[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(12):2250-2256(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.12.002
    [13]
    EDWARD B, CHRIS A, JEFF B, et al.NDOF simulation model for flight control development with flight test correlation[C]//AIAA Modeling and Simulation Technologies Conference.Reston: AIAA, 2010: 7780-7794.
    [14]
    ABHINEET G, CLAUDIA P M, HARALD P, et al.Updating a finite element based structural model of a small flexible aircraft[C]//AIAA Modeling and Simulation Technologies Conference.Reston: AIAA, 2015: 1-14.
    [15]
    孙智伟.高空长航时无人机多学科设计若干问题研究[D].西安: 西北工业大学, 2016.

    SUN Z W.Investigation of the problems in multidisciplinary design of high altitude long endurance unmanned aerial vehicle[D].Xi'an: Northwestern Polytechnical University, 2016(in Chinese).
    [16]
    ANDY P.Gain scheduling via linear fractional transformations[J].Systems and Control Letters, 1994, 22(2):79-92. doi: 10.1016/0167-6911(94)90102-3
    [17]
    WU F.Control of linear parameter varying systems[D].Berkeley: University of California, 1995.
    [18]
    SUN X, POSTLETHWAITE I.Affine LPV modeling and its use in gain-scheduled helicopter control[C]//UKACC International Conference on Control.[S.l.]: Institution of Engineering and Technology, 1998: 1504-1509.
    [19]
    THEIS J, SEILER P, WERNER H.Model order reduction by parameter-varying oclique projection[C]//American Control Conference.Piscataway: IEEE Press, 2016: 4586-4591.
    [20]
    WU F, YANG X H, ANDY P, et al.Induced L2-norm control for LPV systems with bounded parameter variation rates[C]//American Control Conference.Piscataway: IEEE Press, 2002: 983-998.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views(872) PDF downloads(164) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return