Volume 46 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
ZHAO Wei, HUANG Jiangliu, ZHOU Zhou, et al. Effects of propeller slipstream on diamond joined-wing configuration solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1296-1306. doi: 10.13700/j.bh.1001-5965.2019.0438(in Chinese)
Citation: ZHAO Wei, HUANG Jiangliu, ZHOU Zhou, et al. Effects of propeller slipstream on diamond joined-wing configuration solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1296-1306. doi: 10.13700/j.bh.1001-5965.2019.0438(in Chinese)

Effects of propeller slipstream on diamond joined-wing configuration solar-powered UAV

doi: 10.13700/j.bh.1001-5965.2019.0438
More Information
  • Corresponding author: ZHAO Wei. E-mail:zhaowei_0203@163.com
  • Received Date: 12 Aug 2019
  • Accepted Date: 20 Sep 2019
  • Publish Date: 20 Jul 2020
  • In order to investigate the influence of propeller slipstream on the aerodynamic characteristics of low Reynolds number diamond joined-wing configuration solar-powered UAV with different rotational speeds. It was simulated accurately by solving the Reynolds Averaged Navier-Stokes (RANS) equation based on Momentum Source Method (MSM) and k-kL-ω transition model. The mechanism of the propeller slipstream effects at different angles of attack and rotational speeds was analyzed by comparing the flow field structure and pressure distribution on the wing surface. The research shows that with the increase of the propeller rotational speed at low angle of attack, the propeller slipstream leads to the obvious increment of lift and decrement of drag. And the maximum lift-to-drag ratio is increased by 18.4% at 3 000 r/min. At low angle of attack, the air flow is accelerated by propeller, and it leads to increment of lift for the Frt-wing. And for the Aft-wing, the rotation of the air flow leads to decrement of pressure drag because of the emergence of low-pressure region at lower surface of leading edge. At high angle of attack, the effects of propeller to the Frt-wing are not changed. However for Aft-wing, the range and strength of low-pressure region at lower surface of leading edge decrease, which leads to the disappearance of negative lift area at leading edge as well as the notable increase of the lift and the pressure drag. Besides, since the main contribution components of lift increment are different at different angles of attack, the longitudinal static stability margin of UAV shows an enhancement with the increase of propeller rotational speed. The diamond joined-wing configuration solar-powered UAV can effectively utilize the slipstream of propeller to improve the aerodynamic performance by reasonably setting the position and speed of propeller.

     

  • loading
  • [1]
    昌敏, 周洲, 郑志成.太阳能飞机原理及总体参数敏度分析[J].西北工业大学学报, 2010, 28(5):792-796. doi: 10.3969/j.issn.1000-2758.2010.05.029

    CHANG M, ZHOU Z, ZHENG Z C.Flight principles of solar-powered airplane and sensitivity of its conceptual parameters[J]. Journal of Northwestern Polytechnical University, 2010, 28(5):792-796(in Chinese). doi: 10.3969/j.issn.1000-2758.2010.05.029
    [2]
    邓海强, 余雄庆.太阳能飞机的现状和发展趋势[J].航空科学技术, 2006(1):28-30. doi: 10.3969/j.issn.1007-5453.2006.01.009

    DENG H Q, YU X Q.Solar aircraft:Status and directions[J]. Aeronautical Science and Technology, 2006(1):28-30(in Chinese). doi: 10.3969/j.issn.1007-5453.2006.01.009
    [3]
    刘强, 刘强, 白鹏, 等.不同雷诺数下翼型气动特性及层流分离现象演化[J].航空学报, 2017, 38(4):22-34. http://d.old.wanfangdata.com.cn/Periodical/hkxb201704003

    LIU Q, LIU Q, BAI P, et al.Aerodynamic characteristics of airfoil and evolution of laminar separation at different Reynolds numbers[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(4):22-34(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201704003
    [4]
    甘文彪, 周洲, 许晓平.仿生全翼式太阳能无人机气动数值模拟[J].航空学报, 2015, 36(10):3284-3294. http://d.old.wanfangdata.com.cn/Periodical/hkxb201510009

    GAN W B, ZHOU Z, XU X P.Aerodynamic numerical simulation of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3284-3294(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201510009
    [5]
    NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al.Investigation of the Helios prototype aircraft mishap.Volume I.Mishap report[R].Washington, D.C.: NASA, 2004.
    [6]
    王伟, 周洲, 祝小平, 等.考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J].西北工业大学学报, 2014, 32(4):499-504. doi: 10.3969/j.issn.1000-2758.2014.04.004

    WANG W, ZHOU Z, ZHU X P, et al.Static aeroelastic characteristics analysis of a very flexible solar powered UAV with geometrical effect considered[J].Journal of Northwestern Polytechnical University, 2014, 32(4):499-504(in Chinese). doi: 10.3969/j.issn.1000-2758.2014.04.004
    [7]
    DILLSAVER M J, CESNIK C E S, KOLMANOVSKY I V.Gust response sensitivity characteristics of very flexible aircraft[C]//AIAA Atmospheric Flight Mechanics Conference.Reston: AIAA, 2012: 1-20.
    [8]
    CHARLE T, GREGORY S.Comparsion of computation and experimental studies for a joined wing aircraft: AIAA-2002-0702[R].Reston: AIAA, 2002.
    [9]
    LEDOUX S, VASSBERG J, FATTA G, et al.Aerodynamic cruise design of a joined wing sensorcraft: AIAA-2008-7190[R].Reston: AIAA, 2008.
    [10]
    李光里, 李国文, 黎军, 等.连接翼布局气动特性研究[J].空气动力学学报, 2006, 24(4):513-519. doi: 10.3969/j.issn.0258-1825.2006.04.023

    LI G L, LI G W, LI J, et al.The aerodynamic investigation of the joined-wing configuration[J].Acta Aerodynamica Sinica, 2006, 24(4):513-519(in Chinese). doi: 10.3969/j.issn.0258-1825.2006.04.023
    [11]
    吴光辉, 王妙香, 张健.盒式布局飞机的纵向气动参数优化研究[J].飞行力学, 2007, 25(4):5-7. doi: 10.3969/j.issn.1002-0853.2007.04.002

    WU G H, WANG M X, ZHANG J.Research on longitudinal aerodynamic parameter optimize of a joined-wing configuration aircraft[J].Flight Dynamics, 2007, 25(4):5-7(in Chinese). doi: 10.3969/j.issn.1002-0853.2007.04.002
    [12]
    CATALANO F M.On the effects of an installed propeller slipstream on wing aerodynamic characteristics[J].Acta Polytechnica, 2004, 44(3):8-14. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_96bd7bbfc40624c1b60540bb550ea624
    [13]
    王科雷, 祝小平, 周洲, 等.低雷诺数分布式螺旋桨滑流气动影响[J].航空学报, 2016, 37(9):2669-2678. http://d.old.wanfangdata.com.cn/Periodical/hkxb201609005

    WANG K L, ZHU X P, ZHOU Z, et al. A study of distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2669-2678(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201609005
    [14]
    王红波, 祝小平, 周洲, 等.基于非定常面元/黏性涡粒子法的低雷诺数滑流气动干扰[J].航空学报, 2017, 38(4):120412. http://www.cqvip.com/QK/91925X/201704/672038435.html

    WANG H B, ZHU X P, ZHOU Z, et al.Aerodynamic interactions at low Reynolds number slipstream with unsteady panel/viscous vortex particle method[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120412(in Chinese). http://www.cqvip.com/QK/91925X/201704/672038435.html
    [15]
    RAJAGOPALAN R G, LIM C K.Laminar flow analysis of a rotor in hover[J].Journal of the American Helicopter Society, 1991, 36(1):12-23. doi: 10.4050/JAHS.36.1.12
    [16]
    ZORI L A J, RAJAGOPALAN R G. Navier-Stokes calculations of rotor-airframe interaction in forward flight[J].Journal of the American Helicopter Society, 1995, 40(2):57-67. doi: 10.4050/JAHS.40.57
    [17]
    O'BRIEN M, SMITH M J.Analysis of rotor-fuselage interactions using various rotor models: AIAA-2005-468[R].Reston: AIAA, 2005.
    [18]
    宋长红, 林永峰, 陈文轩, 等.基于动量源方法的涵道尾桨CFD分析[J].直升机技术, 2009(1):6-11. doi: 10.3969/j.issn.1673-1220.2009.01.002

    SONG C H, LIN Y F, CHEN W X, et al.CFD analysis for the ducted tail rotor based on momentum-source method[J].Helicopter Technique, 2009(1):6-11(in Chinese). doi: 10.3969/j.issn.1673-1220.2009.01.002
    [19]
    WALTERS D K, COKLJAT D.A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow[J].Journal of Fluids Engineering, 2008, 130(12):320-327. https://www.researchgate.net/publication/228634792_A_Three-Equation_Eddy-Viscosity_Model_for_Reynolds-Averaged_Navier-Stokes_Simulations_of_Transitional_Flow
    [20]
    LYON C A, BROEREN A P, GIGUERE P, et al.Summary of low-speed airfoil data-Vol.3[M].Virginia Beach:Soartech Publications, 1997:279-286.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views(672) PDF downloads(156) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return