Volume 46 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
WANG Yan, WANG Hua, CUI Cunyan, et al. Prediction method of shock wave peak overpressure generated by air explosion of rocket[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1371-1378. doi: 10.13700/j.bh.1001-5965.2019.0481(in Chinese)
Citation: WANG Yan, WANG Hua, CUI Cunyan, et al. Prediction method of shock wave peak overpressure generated by air explosion of rocket[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1371-1378. doi: 10.13700/j.bh.1001-5965.2019.0481(in Chinese)

Prediction method of shock wave peak overpressure generated by air explosion of rocket

doi: 10.13700/j.bh.1001-5965.2019.0481
More Information
  • Corresponding author: WANG Hua, E-mail: wanghuaprofessor@163.com
  • Received Date: 05 Sep 2019
  • Accepted Date: 03 Jan 2020
  • Publish Date: 20 Jul 2020
  • During the normal flight of rocket, propellant leakage may lead to explosion due to the failure of rocket structure or components. Once the explosion happens to the rocket, the crew module will be impacted by the shock wave, threatening the life safety of the astronauts. At present, there is little research on how rocket altitude affects shock waves. In order to explore the impact of flight height on peak overpressure of rocket during air explosion and obtain the rapid prediction method of shock wave parameters, ANSYS/LS-DYNA is used to carry out finite element simulation analysis of rocket explosion at different flight heights of 0-20 km. The results show that the peak overpressure of shock wave acting on the crew module decreases fast with the increase of flight height. The relation between pressure attenuation coefficient and flight height of air explosive shock wave follows the decreasing interval of quadratic function. On this basis, the formula of predicting the peak overpressure of the shock wave in the air explosion of rocket considering the height effect is put forward, which can provide some reference for the rapid hazard assessment and protection research of the crew module.

     

  • loading
  • [1]
    VAUGHAN D.The challenger launch decision:Risky culture, technology, and deviance at NASA[M].Chicago:University of Chicago Press, 1996:1-11.
    [2]
    WILLOUGHBY A B, WILTON C, MANSFIELD J.Liquid propellant explosive hazards(Volume Ⅰ Technical documentary report): AD855086[R].Burlingame: URS Research Company, 1968: 126-139.
    [3]
    WILLOUGHBY A B, WILTON C, MANSFIELD J.Liquid propellant explosive hazards(Volume Ⅱ Test data): AD857342[R].Burlingame: URS Research Company, 1968: 158-170.
    [4]
    WILLOUGHBY A B, WILTON C, MANSFIELD J.Liquid propellant explosive hazards(Volume Ⅲ Test data): AD855087[R].Burlingame: URS Research Company, 1968: 209-221.
    [5]
    FARBER E A.Characteristics of liquid rocket propellant explosion phenomena(Part Ⅷ Prediction of explosive yield and other characteristics of liquid propellant rocket explosions): N69-18896[R].Gainesville: Florida Engineering and Industrial Experiment Station, 1968: 175-188.
    [6]
    BLACKWOOD J, SKINNER T, RICHARDSON E, et al.An empirical non-TNT approach to launch vehicle explosion modeling[C]//53rd AIAA Aerospace Sciences Meeting.Reston: AIAA, 2015: 5-9.
    [7]
    刘科种, 徐更光, 辛春亮, 等.近水面水下爆炸对结构冲击的数值模拟[J].兵工学报, 2010, 31(1):64-68. doi: 10.3969/j.issn.1673-6524.2010.01.016

    LIU K Z, XU G G, XIN C L, et al.Numerical simulation for structure subjected to underwater explosion shock wave in shallow-water[J].Acta Armamentarii, 2010, 31(1):64-68(in Chinese). doi: 10.3969/j.issn.1673-6524.2010.01.016
    [8]
    OSIPOV V, MURATOV C, HAFIYCHUK H, et al.Explosion hazard from a propellant-tank breach in liquid hydrogen-oxygen rockets[J].Journal of Spacecraft and Rockets, 2013, 50(4):860-871. doi: 10.2514/1.A32277
    [9]
    HOSANGADI A, MADAVAN N.Simulation of propellant explosions resulting from crew launch vehicle tank failure: AIAA-2008-6912[R].Reston: AIAA, 2008.
    [10]
    刘博, 王煊军, 宋海洲.液体推进剂爆炸冲击波的数值模拟[J].航天器环境工程, 2012, 29(2):129-133. doi: 10.3969/j.issn.1673-1379.2012.02.003

    LIU B, WANG X J, SONG H Z.Numerical simulation of explosion shock wave in air with liquid propellant[J].Spacecraft Environment Engineering, 2012, 29(2):129-133(in Chinese). doi: 10.3969/j.issn.1673-1379.2012.02.003
    [11]
    孙克, 陈景鹏, 赵继广, 等.低温液体火箭塔台爆炸事故危害性分析[J].计算机仿真, 2013, 30(3):109-113. doi: 10.3969/j.issn.1006-9348.2013.03.027

    SUN K, CHEN J P, ZHAO J G, et al.Hazard analysis on explosion of cryogenic liquid rocket on launch pad[J].Computer Simulation, 2013, 30(3):109-113(in Chinese). doi: 10.3969/j.issn.1006-9348.2013.03.027
    [12]
    陈景鹏, 韩斯宇, 孙克, 等.液体火箭共底破裂爆炸安全设防距离[J].火灾科学, 2012, 21(3):131-136. http://d.old.wanfangdata.com.cn/Periodical/hzkx201203004

    CHEN J P, HAN S Y, SUN K, et al.Fortification distance for prevention of liquid rocket explosion[J].Fire Safety Science, 2012, 21(3):131-136(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hzkx201203004
    [13]
    李勇, 肖伟, 程远胜, 等.冲击波与破片对波纹杂交夹层板的联合毁伤数值研究[J].爆炸与冲击, 2018, 38(2):279-288. http://d.old.wanfangdata.com.cn/Periodical/bzycj201802006

    LI Y, XIAO W, CHENG Y S, et al.Numerical research on response of hybrid corrugated sandwich plates subjected to combined blast and fragment loadings[J].Explosion and Shock Waves, 2018, 38(2):279-288(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bzycj201802006
    [14]
    耿振刚, 李秀地, 苗朝阳, 等.温压炸药爆炸冲击波在坑道内的传播规律研究[J].振动与冲击, 2017, 36(5):23-29. http://d.old.wanfangdata.com.cn/Periodical/zdycj201705005

    GENG C G, LI X D, MIAO C Y, et al.Propagation of blast wave of thermobaric explosive inside a tunnel[J].Journal of Vibration and Shock, 2017, 36(5):23-29(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdycj201705005
    [15]
    谢雪腾.高原环境爆炸冲击波传播特性的数值模拟与实验研究[D].南京: 南京理工大学, 2017: 31-56.

    XIE X T.Numerical simulation and experimental research on propagation characteristics of blast shock wave at plateau environment[D].Nanjing: Nanjing University of Science and Technology, 2017: 31-56(in Chinese).
    [16]
    庞春桥, 陶钢, 周佩杰, 等.高原环境下爆炸冲击波参数的有效预测方法[J].振动与冲击, 2018, 37(14):221-226. http://d.old.wanfangdata.com.cn/Periodical/zdycj201814031

    PANG C Q, TAO G, ZHOU P J, et al.Effective method for predicting the parameters of shock waves in plateau environment[J].Journal of Vibration and Shock, 2018, 37(14):221-226(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdycj201814031
    [17]
    宋元宁, 于立友, 李彩霞.TNT当量法预测某石化设备爆炸后果评价[J].中国安全生产科学技术, 2005, 1(3):66-68. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz200503017

    SONG Y N, YU L Y, LI C X.TNT equivalent method predicts the consequence that some petrochemical industry equipment explodes[J].Journal of Safety Science and Technology, 2005, 1(3):66-68(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz200503017
    [18]
    陈新华, 聂万胜.液体推进剂爆炸危害性评估方法及应用[M].北京:国防工业出版社, 2005:99-104.

    CHEN X H, NIE W S.Method and application of liquid propellant explosion hazard assessment[M].Beijing:National Defence Industry Press, 2005:99-104(in Chinese).
    [19]
    WANG J X, YIN Y, LUO C W.Johnson-Holmquist-Ⅱ(JH-2) constitutive model for rock materials:Parameter determination and application in tunnel smooth blasting[J].Appllied Sciences, 2018, 8(9):1675. doi: 10.3390/app8091675
    [20]
    YANG Y B, XIE X Y, WANG R L.Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion[J].Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(4):373-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxyytgcxb-e201004011
    [21]
    周杰, 陶钢, 张洪伟, 等.模拟不同爆炸冲击波的计算方法研究[J].兵工学报, 2014, 35(11):1846-1850. doi: 10.3969/j.issn.1000-1093.2014.11.016

    ZHOU J, TAO G, ZHANG H W, et al.Research on simulating method of different blast waves[J].Acta Armamentarii, 2014, 35(11):1846-1850(in Chinese). doi: 10.3969/j.issn.1000-1093.2014.11.016
    [22]
    HU Q Y, YU H T, YUAN Y.Numerical simulation of dynamic response of an existing subway station subjected to internal blast loading[J].Transactions of Tianjin University, 2008(S1):563-568. doi: 10.1007-s12209-008-0097-4/
    [23]
    尚晓江, 苏建宇, 王化锋.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社, 2008:257-274.

    SHANG X J, SU J Y, WANG H F, et al.ANSYS/LS-DYNA dynamic analysis method and engineering examples[M].Beijing:China Water Conservancy and Hydropower Press, 2008:257-274(in Chinese).
    [24]
    SESHADRI R, NAVEEN I, SHARAN S, et al.Finite element simulation of the orthogonal machining process with Al 2024 T351 aerospace alloy[J].Procedia Engineering, 2013, 64:1454-1463. doi: 10.1016/j.proeng.2013.09.227
    [25]
    钱翼稷.空气动力学[M].北京:北京航空航天大学出版社, 2004:18-21.

    QIAN Y J.Aerodynamics[M].Beijing:Beihang University Press, 2004:18-21(in Chinese).
    [26]
    聂源, 蒋建伟, 李梅.球形装药动态爆炸冲击波超压场计算模型[J].爆炸与冲击, 2017, 37(5):951-956. http://d.old.wanfangdata.com.cn/Periodical/bzycj201705023

    NIE Y, JIANG J W, LI M.Overpressure calculation model of sphere charge blasting with moving velocity[J].Explosion and Shock Waves, 2017, 37(5):951-956(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bzycj201705023
    [27]
    BRODE H L.Blast wave from a spherical charge[J].The Physics of Fluids, 1959, 2(2):217-229. doi: 10.1063/1.1705911
    [28]
    HENRYCH J, MAJOR R.The dynamics of explosion and its use[M].New York:Elsevier Scientific Publishing Company, 1979:73-74.
    [29]
    NEHDI M L, ALI M A E M.Experimental and numerical study of engineered cementitious composite with strain recovery under impact loading[J].Applied Sciences, 2019, 9(5):994. doi: 10.3390/app9050994
    [30]
    ZHONG D W, GONG X C, HAN F, et al.Monitoring the dynamic response of a buried polyethylene pipe to a blast wave:An experimental study[J].Applied Sciences, 2019, 9(8):1663. doi: 10.3390/app9081663
    [31]
    BENSELAMA A M, MAME J P, MONNOYER F.Prediction of blast wave effects on a developed site[J].International Journal of Impact Engineering, 2010, 37(4):385-396. doi: 10.1016/j.ijimpeng.2009.08.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views(644) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return