Volume 46 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
HU Jing, YANG Fuquan, GUO Dezhou, et al. Optimization of anode propellant allocation manner of 10 cm xenon ion thruster based on CFD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1476-1484. doi: 10.13700/j.bh.1001-5965.2019.0484(in Chinese)
Citation: HU Jing, YANG Fuquan, GUO Dezhou, et al. Optimization of anode propellant allocation manner of 10 cm xenon ion thruster based on CFD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1476-1484. doi: 10.13700/j.bh.1001-5965.2019.0484(in Chinese)

Optimization of anode propellant allocation manner of 10 cm xenon ion thruster based on CFD

doi: 10.13700/j.bh.1001-5965.2019.0484
Funds:

Civil Space Advance Research Project D010509

National Natural Science Foundation of China 61601210

More Information
  • Corresponding author: HU Jing. E-mail:hjing37615486@163.com
  • Received Date: 05 Sep 2019
  • Publish Date: 20 Aug 2020
  • The concentration distribution of anode propellant in discharge chamber and its gradient design is one of the most important techniques in discharging mode reliability design, and it directly influences the ionization efficiency and discharge stability of anode propellant. Aimed at the application requirement of multi-objective attitude and orbit control of spacecraft for 10 cm xenon ion thruster, by using the Computational Fluid Dynamics (CFD) method, the CFD model for analyzing the propellant allocation manner is established, which consists of the propellant, the inner tube and the distribution ring. The pressure and velocity distribution rules of anode-ring propellant in different allocation manners were studied without discharge progress to ameliorate circumferential uniformity of propellant in 10 cm xenon ion thruster discharge chamber and improve its utilization efficiency. On this basis, the influences of anode propellant allocation manner on the propellant distribution characteristics in discharge chamber were analyzed. And the performance of anode-ring before and after optimization in 10 cm xenon ion thruster are compared. The results show that after the improvement of the anode propellant allocation manner, the ion production cost drops from 277.9 W/A to 241.2 W/A, and the propellant utilization efficiency in discharge chamber increases from 91.7% to 98.4%, which verify the correctness of CFD calculation results and the feasibility of the CFD method. The results of this research will certainly provide method for the topological structure design and optimization of the discharge chamber of ion thruster.

     

  • loading
  • [1]
    郑茂繁, 张天平, 孟伟, 等.20 cm氙离子推力器性能扩展研究术[J].推进技术, 2015, 36(7):1116-1120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201507021

    ZHENG M F, ZHANG T P, MENG W, et al.Research of improvement performance for 20 cm xenon ion thruster[J].Journal of Propulsion Technology, 2015, 36(7):1116-1120(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201507021
    [2]
    杨福全, 万耿民, 唐福军, 等.电推力器气路高电压绝缘技术研究[J].真空科学与技术学报, 2014, 34(12):1290-1293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zkkx201412003

    YANG F Q, WAN G M, TANG F J, et al.Novel type of high voltage xenon propellant insulator for electric thruster[J].Chinese Journal of Vacuum Science and Technology, 2014, 34(12):1290-1293(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zkkx201412003
    [3]
    张天平, 田华兵, 孙运奎.离子推进系统用于GEO卫星南北位保使命的能力与效益[J].真空与低温, 2010, 16(2):72-77. doi: 10.3969/j.issn.1006-7086.2010.02.002

    ZHANG T P, TIAN H B, SUN Y K.Capability and benefit of the LIPS-200 system for NSSK mission of GEO satellites[J].Vacuum and Cryogenics, 2010, 16(2):72-77(in Chinese). doi: 10.3969/j.issn.1006-7086.2010.02.002
    [4]
    胡竟, 江豪成, 王亮, 等.阴极挡板对30 cm氙离子推力器性能影响的研究[J].真空与低温, 2015, 21(2):103-106. doi: 10.3969/j.issn.1006-7086.2015.02.010

    HU J, JIANG H C, WANG L, et al.Study on performances of 30 cm xenon ion thruster subjected to cathode baffle[J].Vacuum and Cryogenics, 2015, 21(2):103-106(in Chinese). doi: 10.3969/j.issn.1006-7086.2015.02.010
    [5]
    胡竟, 王亮, 张天平, 等.LIPS-300离子推力器环形会切磁场等效磁路分析研究[J].推进技术, 2018, 39(3):715-720. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201803028

    HU J, WANG L, ZHANG T P, et al.Research on equivalent magnetic circuit of ring-cusp magnet field for LIPS-300 ion thruster[J].Journal of Propulsion Technology, 2018, 39(3):715-720(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201803028
    [6]
    杨福全, 王蒙, 郑茂繁, 等.10 cm离子推力器放电室性能优化研究[J].推进技术, 2017, 38(1):235-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201701031

    YANG F Q, WANG M, ZHENG M F, et al.Optimization of performance of discharge chamber of a 10 cm diameter ion thruster[J].Journal of Propulsion Technology, 2017, 38(1):235-240(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tjjs201701031
    [7]
    HERMAN D A, GALLIMORE A D.Comparison of discharge plasma parameters in a 30-cm NSTAR type ion engine with and without beam extraction: AIAA-2003-5162[R].Reston: AIAA, 2003.
    [8]
    BEATTIE J R, MATOSSIAN J N, POESCHEL R L, et al.Xenon ion propulsion subsystem[J].Journal of Propulsion and Power, 197l, 5(4):438-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=68189d600ef44b678a7d3e0634af2a7a
    [9]
    NAKAYAMA Y, NARISAWA K.Neutral pressure measurement in an ion thruster discharge chamber: IEPC-2013-106[R].Washington, D.C.: IEPC, 2013: 1-8.
    [10]
    NAKAYAMA Y, MIYAZAKI K, KITAMURA S.Performance test of a 14 cm xenon ion thruster: AIAA-1992-3147[R].Reston: AIAA, 1992.
    [11]
    REID B M.The influence of neutral flow rate in the operation of hall thrusters[D].Ann Arbor: University of Michigan, 2009: 42-128.
    [12]
    JANES G S, LOWDER R S.Anomalous electron diffusion and ion acceleration in a low density plasma[J].Physics of Fluids, 1966, 9(6):1115-1123. doi: 10.1063/1.1761810
    [13]
    王福军.计算流体动力学分析——CFD软件原理与运用[M].北京:清华大学出版社, 2004:185-253.

    WANG F J.Analysis of computational fluid dynamics:The principles and applications of CFD software[M].Beijing:Tsinghua University Press, 2004:185-253(in Chinese).
    [14]
    LAFFERTY J.Foundations of vacuum science and technology[M].New York:John Wiley and Sons, 1998:135-136.
    [15]
    陈熙.热等离子体传热与流动[M].北京:科学出版社, 2009:41-43.

    CHEN X.Heater transfer and fluid flow of thermal plasmas[M].Beijing:Science Press, 2009:41-43(in Chinese).
    [16]
    王欲知, 陈旭.真空技术[M].2版.北京:北京航空航天大学出版社, 2007:100-102.

    WANG Y Z, CHEN X.Vacuum technology[M].2nd ed.Beijing:Beihang University Press, 2007:100-102(in Chinese).
    [17]
    KETSDEVER A D, CLABOUGH M T, GIMELSHEIN S F, et al.Experimental and numerical determination of micro propulsion device efficiencies at low Reynolds numbers[J].AIAA Journal, 2015, 43(3):633-641. https://apps.dtic.mil/dtic/tr/fulltext/u2/a432073.pdf
    [18]
    LILLY T, SELDEN N P, GIMELSHIEN S F, et al.Measurements and computations of mass flow and momentum flux through short tubes in rarefied gases[J].Physics of Fluids, 2006, 18(9):4173-4180. https://www.academia.edu/16645979/Measurements_and_computations_of_mass_flow_and_momentum_flux_through_short_tubes_in_rarefied_gases
    [19]
    LILLY T C, SELDEN N P, GIMELSHIEN S F, et al.Numerical and experimental study of low Reynolds number flow through thin-walled orifice and short circular tube: AIAA-2004-2385[R].Reston: AIAA, 2004.
    [20]
    韩占忠, 王敬, 兰小平.FLUENT:流体工程仿真计算机实例与应用[M].北京:北京理工大学出版社, 2004:109-258.

    HAN Z Z, WANG J, LAN X P.FLUENT:Fluid engineering simulation examples and application of computer[M].Beijing:Beijing Institute of Technology Press, 2004:109-258(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(717) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return