Zhou Qiang, Yu Bao, Bi Shushenget al. Study on working path of microarrayer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(07): 789-793. (in Chinese)
Citation: BIAN Liang, LUO Xiaoyang, LI Shuoet al. Image mosaic tampering detection based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 1039-1044. doi: 10.13700/j.bh.1001-5965.2019.0583(in Chinese)

Image mosaic tampering detection based on deep learning

doi: 10.13700/j.bh.1001-5965.2019.0583
More Information
  • Corresponding author: BIAN Liang, E-mail:askquestionbl@163.com
  • Received Date: 13 Nov 2019
  • Accepted Date: 29 Nov 2019
  • Publish Date: 20 May 2020
  • The traditional image stitching detection algorithm manually constructs the stitching features by researchers. With the advancement of technology and the continuous development of image processing technology, the limitations of the features of manual construction, such as weak robustness and difficult positioning, are gradually manifested. Aimed at this kind of problem, this paper proposes to construct a Convolutional Neural Network (CNN) by means of fixed pre-convolution kernel, and detect the image tampering area by feature self-learning. Through experiments and research, it is found that the features of the mosaic tampering area of the spliced tamper image can be learned by the CNN model. Prior to the CNN model, the convolution kernel uses a high-pass filter and the activation function uses an Exponential Linear Unit (ELU), which makes the CNN model be capable of identifying features such as splicing and tampering with image edge traces. The detection results show that the positioning accuracy for the falsification image's tampering area is 84.3% in the IEEE IFS-TC image forensics training set and the detection true negative rate of the tampering area is 96.18%.

     

  • [1]
    HAGHIGHI B B, TAHERINIA A H, MOHAJERZADEH A H.TRLG:Fragile blind quad watermarking for image tamper detection and recovery by providing compact digests with optimized quality using LWT and GA[J].Information Sciences, 2019, 486:204-230. doi: 10.1016/j.ins.2019.02.055
    [2]
    李燕, 钟磊, 李健.基于LBP和共生矩阵的图像拼接篡改检测[J].武汉大学学报(理学版), 2015, 61(6):517-524.

    LI Y, ZHONG L, LI J.Detection of image splicing forgery based on LBP and co-occurrence matrix[J].Journal of Wuhan University(Natural Science Edition), 2015, 61(6):517-524(in Chinese).
    [3]
    LUO W, QU Z, HUANG J, et al.A novel method for detecting cropped and recompressed image block[C]//IEEE International Conference on Acoustics, Speech and Signal Processing.Piscataway, NJ: IEEE Press, 2007: 217-220.
    [4]
    SWAMINATHAN A, WU M, LIU K J R.Component forensics of digital cameras: A non-intrusive approach[C]//2006 40th Annual Conference on Information Sciences and Systems.Piscataway, NJ: IEEE Press, 2007: 1194-1199.
    [5]
    ZHANG Q, LU W, WANG R, et al.Digital image splicing detection based on Markov features in block DWT domain[J].Multimedia Tools and Applications, 2018, 77(23):31239-31260. doi: 10.1007/s11042-018-6230-z
    [6]
    KANG X, LI Y, QU Z, et al.Enhancing source camera identification performance with a camera reference phase sensor pattern noise[J].IEEE Transactions on Information Forensics and Security, 2012, 7(2):393-402. doi: 10.1109/TIFS.2011.2168214
    [7]
    ZENG H, ZHAN Y, KANG X, et al.Image splicing localization using PCA-based noise level estimation[J].Multimedia Tools and Applications, 2017, 76(4):4783-4799. doi: 10.1007/s11042-016-3712-8
    [8]
    YAO H, WANG S, ZHANG X, et al.Detecting image splicing based on noise level inconsistency[J].Multimedia Tools and Applications, 2017, 76(10):12457-12479. doi: 10.1007/s11042-016-3660-3
    [9]
    HAN J G, PARK T H, MOON Y H, et al.Quantization-based Markov feature extraction method for image splicing detection[J].Machine Vision and Applications, 2018, 29(3):543-552. doi: 10.1007/s00138-018-0911-5
    [10]
    BELFERDI W, BEHLOUL A, NOUI L.A Bayer pattern-based fragile watermarking scheme for color image tamper detection and restoration[J].Multidimensional Systems and Signal Processing, 2019, 30(3):1093-1112. doi: 10.1007/s11045-018-0597-x
    [11]
    RAJPUT V, ANSARI I A.Image tamper detection and self-recovery using multiple median watermarking[J/OL].Multimedia Tools and Applications, 2019: 1-17[2019-03-01].https://doi.org/10.1007/s11042-019-07971-w.
    [12]
    SHIN H C, ORTON M R, COLLINS D J, et al.Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(8):1930-1943.
    [13]
    VINCENT P, LAROCHELLE H, LAJOIE I, et al.Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J].Journal of Machine Learning Research, 2010, 11(12):3371-3408.
    [14]
    LUKAS J, FRIDRICH J, GOLJAN M.Digital camera identification from sensor pattern noise[J].IEEE Transactions on Information Forensics and Security, 2006, 1(2):205-214. doi: 10.1109/TIFS.2006.873602
    [15]
    LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998, 86(11):2278-2324. doi: 10.1109/5.726791
  • Relative Articles

    [1]ZHU J Z,WANG C,LI X K,et al. A deep reinforcement learning based on discrete state transition algorithm for solving fuzzy flexible job shop scheduling problem[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1385-1394 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0211.
    [2]LU S Q,GUAN F X,LAI H T,et al. Two-stage underwater image enhancement method based on convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):321-332 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1003.
    [3]MA S G,LI N B,HOU Z Q,et al. Object detection algorithm based on DSGIoU loss and dual branch coordinate attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1085-1095 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0192.
    [4]REN Liqiang, WANG Haipeng, PAN Xinlong, WAN Bing, TANG Tiantian. A complex maneuver recognition method based on wavelet time-frequency image and lightweight CNN-Transformer hybrid neural network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0745
    [5]CHAI G Q,BO X S,LIU H J,et al. Self-supervised scene depth estimation for monocular images based on uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3780-3787 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0943.
    [6]LU G,ZHONG T X,GENG J. A Transformer based deep conditional video compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):442-448 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0374.
    [7]ZHAO S Y,A Q,GAO Y. Cross-modality nearest neighbor loss for visible-infrared person re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):433-441 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0422.
    [8]LIANG Zhen-feng, XIA Hai-ying, TAN Yu-mei, SONG Shu-xiang. Aerial Image Stitching Algorithm Based on Unsupervised Deep Learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0366
    [9]LI Y H,YU H K,MA D F,et al. Improved transfer learning based dual-branch convolutional neural network image dehazing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):30-38 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0253.
    [10]HOU Z Q,MA J Y,HAN R X,et al. A fast long-term visual tracking algorithm based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2391-2403 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0645.
    [11]JIANG Y,CHEN M Y,YUAN Q,et al. Departure flight delay prediction based on spatio-temporal graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1044-1052 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0415.
    [12]SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130.
    [13]LYU Z Y,NIE X Y,ZHAO A B. Prediction of wing aerodynamic coefficient based on CNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):674-680 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0276.
    [14]BAO Y T,LIU W,LI R S,et al. Semantic segmentation of remote sensing images based on U-shaped network combined with spatial enhance attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1828-1837 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0544.
    [15]LIU Meiqin, XU Chenming, YAO Chao, LIN Chunyu, ZHAO Yao. Dual coding unit partition optimization algorithm of HEVC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1383-1389. doi: 10.13700/j.bh.1001-5965.2021.0528
    [16]TIAN Limei, GONG Mengtong, TANG Diyin, HAN Danyang, YU Jinsong, LI Chunwei. Degradation indicator extraction for aerospace CMG based on power consumption analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1899-1905. doi: 10.13700/j.bh.1001-5965.2021.0060
    [17]SU Kaiqi, YAN Weiqing, XU Jindong. 3D object detection based on multi-path feature pyramid network for stereo images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1487-1494. doi: 10.13700/j.bh.1001-5965.2021.0525
    [18]CHAI Guoqiang, WANG Dawei, LU Bin, LI Zhu. Lightweight densely connected network based on attention mechanism for single-image deraining[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2186-2192. doi: 10.13700/j.bh.1001-5965.2021.0294
    [19]LIU Hao, YANG Xiaoshan, XU Changsheng. Long-tail image captioning with dynamic semantic memory network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1399-1408. doi: 10.13700/j.bh.1001-5965.2021.0518
    [20]LI Zheyang, ZHANG Ruyi, TAN Wenming, REN Ye, LEI Ming, WU Hao. A graph convolution network based latency prediction algorithm for convolution neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2450-2459. doi: 10.13700/j.bh.1001-5965.2021.0149
  • Cited by

    Periodical cited type(6)

    1. 陈烽,杨怀. 边缘异常识别下视频图像篡改细节检测. 计算机仿真. 2024(02): 192-195+226 .
    2. 杨衍宇,魏为民,张运琴. 一种改进的双流Faster R-CNN图像篡改识别模型. 计算机应用与软件. 2023(12): 189-194 .
    3. 潘文,张海民. 基于深度学习的航拍图像自适应拼接方法. 安阳工学院学报. 2022(04): 57-62 .
    4. 张常友,方丽娟. 机器视觉在激光图像拼接中的应用. 激光杂志. 2022(06): 116-120 .
    5. 王红尧,吴佳奇,林松,王梦雅,赵国瑞. 矿井多视角图像拼接方法研究. 工矿自动化. 2021(10): 27-31+48 .
    6. 陈然,吴昊. 基于DeepFake技术的道路交通安全违法行为防范思考. 中国人民公安大学学报(自然科学版). 2020(02): 41-46 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(1519) PDF downloads(558) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return