Volume 47 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
MENG Junhui, LI Moning, MA Nuo, et al. Multidisciplinary design optimization of a lift-type hybrid airship[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 72-83. doi: 10.13700/j.bh.1001-5965.2020.0012(in Chinese)
Citation: MENG Junhui, LI Moning, MA Nuo, et al. Multidisciplinary design optimization of a lift-type hybrid airship[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 72-83. doi: 10.13700/j.bh.1001-5965.2020.0012(in Chinese)

Multidisciplinary design optimization of a lift-type hybrid airship

doi: 10.13700/j.bh.1001-5965.2020.0012
Funds:

National Natural Science Foundation of China 11902029

Key Laboratory of Spacecraft Design Optimization and Dynamic Simulation Technologies (Beihang University), Ministry of Education, China 2019KF004

More Information
  • Corresponding author: MENG Junhui, E-mail: mengjh@bit.edu.cn
  • Received Date: 09 Jan 2020
  • Accepted Date: 10 Apr 2020
  • Publish Date: 20 Jan 2021
  • Lift-type hybrid airship is an important choice of long-distance and large-load transportation. With the development of global trade, it has gradually become a research hotspot at home and abroad. As a new concept aircraft combining aeronautical science and technology, new energy technology and high-performance material technology, multiple disciplines should be considered and optimized in the design process of hybrid airship comprehensively. To introduce the Multidisciplinary Design Optimization (MDO) method into the conceptual design of hybrid airship, it is decomposed into energy subsystem, aerodynamic and propulsion subsystem, and structure and weight subsystem. On the basis of building subsystem model, a Concurrent Subsystem Optimization algorithm based on Response Surface (CSSO-RS) with the self-adaptive ability is put forward. The weight balance and energy balance are set as the constraints to achieve long-distance transportation. Meanwhile, a multi-stage task profile with climb, day cruise, gliding and night cruise is proposed to make full use of solar energy battery, fuel cell and lithium batteries and realize the optimal design of hybrid airship. The optimization results show that the adaptive optimization algorithm has obvious advantages in accuracy and computational efficiency, and the weight distribution results also put forward higher requirements for lightweight design and energy system design of hybrid airships.

     

  • loading
  • [1]
    DONALDSON A, SIMAIAKIS I, LOVEGREN J, et al.Parametric design of low emission hybrid-lift cargo aircraft[C]//Proceedings of 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2010: 1-11.
    [2]
    CARICHNER G E, NICOLAI L M.Fundamentals of aircraft and airship design, Volume 2-Airship design and case studies[M].Reston:AIAA, 2013:49-62.
    [3]
    AGTE J, GAN T, KUNZI F, et al.Conceptual design of a hybrid lift airship for intra-regional flexible access transport[C]//Proceedings of 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2010: 1-16
    [4]
    孟军辉, 张一, 刘东旭, 等.升力体式浮升混合飞艇设计及参数分析[J].航空学报, 2015, 36(5):1500-1510.

    MENG J H, ZHANG Y, LIU D X, et al.Design and parameter analysis of liftbody-type buoyancy-lifting hybrid airships[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1500-1510(in Chinese).
    [5]
    糜攀攀, 孟军辉, 吕明云.浮升混合飞艇气动性能及总体参数分析[J].北京航空航天大学学报, 2015, 41(6):1108-1116. doi: 10.13700/j.bh.1001-5965.2014.0404

    MI P P, MENG J H, LV M Y.Aerodynamic and overall parameters analysis of buoyancy-lifting hybrid airship[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1108-1116(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0404
    [6]
    刘莉, 杜孟尧, 张晓辉, 等.太阳能/氢能无人机总体设计与能源管理策略研究[J].航空学报, 2016, 37(1):144-162.

    LIU L, DU M Y, ZHANG X H, et al.Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(1):144-162(in Chinese).
    [7]
    ASHFORD R, LEVITT B, MAYER N, et al.1981 LTA technology assessment-past and present[C]//Proceedings of Lighter-than-Air Conference.Reston: AIAA, 1981: 1-42.
    [8]
    MITCHELL R.Effectiveness of hybrid airships as cargo airlifters[C]//Proceedings of 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference.Reston: AIAA, 2011: 1-14.
    [9]
    ZHANG L C, LV M Y, MENG J H, et al.Conceptual design and analysis of hybrid airships with renewable energy[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(11):2144-2159. doi: 10.1177/0954410017711726
    [10]
    BROOKE L, BOWN A.Design, analysis, and patterning of inflated lifting body form lta vehicle hulls[C]//Proceedings of 18th AIAA Lighter-Than-Air Systems Technology Conference.Reston: AIAA, 2009: 1-13.
    [11]
    依然.中航工业通飞与法国飞鲸公司签署战略合作协议[J].航空制造技术, 2015(14):18.

    YI R.AVIC Aeneral Aircraft Company has signed a strategic cooperation agreement with Flying Whales Company in French[J].Aeronautical Manufacturing Technology, 2015(14):18(in Chinese).
    [12]
    ZHANG L C, LV M Y, ZHU W Y, et al.Mission-based multidisciplinary optimization of solar-powered hybrid airship[J].Energy Conversion and Management, 2019, 185:44-54. doi: 10.1016/j.enconman.2019.01.098
    [13]
    CERUTI A, VOLOSHIN V, MARZOCCA P.Multi-disciplinary design optimization of unconventional airship configurations with heuristic algorithms[C]//Proceedings of 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston: AIAA, 2013: 1-11.
    [14]
    LIANG H, ZHU M, GUO X, et al.Conceptual design optimization of high altitude airship in concurrent subspace optimization[C]//Proceedings of 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2012: 1-17.
    [15]
    SOBIESZCZANSKI-SOBIESKI J.A linear decomposition method for large optimization problems.Blueprint for development: NASA-TM-83248[R].Hampton: NASA Langley Research Center, 1982: 8-15.
    [16]
    余雄庆, 丁运亮.多学科设计优化算法及其在飞行器设计中应用[J].航空学报, 2000, 21(1):1-6. doi: 10.3321/j.issn:1000-6893.2000.01.001

    YU X Q, DING Y L.Multidisciplinary design optimization a survey of its algorithms and applications to aircraft design[J].Acta Aeronautica et Astronautica Sinica, 2000, 21(1):1-6(in Chinese). doi: 10.3321/j.issn:1000-6893.2000.01.001
    [17]
    刘明航.基于响应面法的并行子空间优化算法改进研究[J].航空科学技术, 2017, 28(9):51-55.

    LIU M H.Research on concurrent subspace optimization based on response surface method[J].Aeronautical Science & Technology, 2017, 28(9):51-55(in Chinese).
    [18]
    陈琪锋, 戴金海, 李晓斌.分布式协同进化MDO算法及其在导弹设计中应用[J].航空学报, 2002, 23(3):245-248. doi: 10.3321/j.issn:1000-6893.2002.03.011

    CHEN Q F, DAI J H, LI X B.Multidisciplinary design optimization based on distributed coevolution-algorithm and application in missile design[J].Acta Aeronautica et Astronautica Sinica, 2002, 23(3):245-248(in Chinese). doi: 10.3321/j.issn:1000-6893.2002.03.011
    [19]
    SELLAR R, BATILL S, RENAUD J.Response surface based, concurrent subspace optimization for multidisciplinary system design[C]//Proceedings of 34th Aerospace Sciences Meeting and Exhibit.Reston: AIAA, 1996: 1-14.
    [20]
    王书河, 何麟书.飞行器多学科设计优化概述[J].宇航学报, 2009, 25(6):697-701.

    WANG S H, HE L S.The summarization of multidisciplinary design optimization for flight vehicles[J].Journal of Astronautics, 2009, 25(6):697-701(in Chinese).
    [21]
    窦毅若, 刘飞, 张为华.响应面建模方法的比较分析[J].工程设计学报, 2007, 14(5):359-363. doi: 10.3785/j.issn.1006-754X.2007.05.003

    DOU Y R, LIU F, ZHANG W H.Research on comparative analysis of response surface methods[J].Jonrnal of Engineering Design, 2007, 14(5):359-363(in Chinese). doi: 10.3785/j.issn.1006-754X.2007.05.003
    [22]
    GAO X Z, HOU Z X, GUO Z, et al.Reviews of methods to extract and store energy for solar-powered aircraft[J].Renewable and Sustainable Energy Reviews, 2015, 44:96-108. doi: 10.1016/j.rser.2014.11.025
    [23]
    RAN H, THOMAS R, MAVRIS D.A comprehensive global model of broadband direct solar radiation for solar cell simulation[C]//Proceedings of 45th AIAA Aerospace Sciences Meeting and Exhibit.Reston: AIAA, 2007: 1-16.
    [24]
    ZHANG L, LI J, MENG J, et al.Thermal performance analysis of a high-altitude solar-powered hybrid airship[J].Renewable Energy, 2018, 125:890-906. doi: 10.1016/j.renene.2018.03.016
    [25]
    WANG H, SONG B, ZUO L.Effect of high-altitude airship's attitude on performance of its energy system[J].Journal of Aircraft, 2007, 44(6):2077-2080. doi: 10.2514/1.31505
    [26]
    IQBAL M.An introduction to solar radiation[M].Amsterdam:Elsevier, 2012:28-39.
    [27]
    LI J, LV M, TAN D, et al.Output performance analyses of solar array on stratospheric airship with thermal effect[J].Applied Thermal Engineering, 2016, 104:743-750. doi: 10.1016/j.applthermaleng.2016.05.122
    [28]
    MEYERS T, DALE R.Predicting daily insolation with hourly cloud height and coverage[J].Journal of Climate and Applied Meteorology, 1983, 22(4):537-545. doi: 10.1175/1520-0450(1983)022<0537:PDIWHC>2.0.CO;2
    [29]
    LV M, LI J, ZHU W, et al.A theoretical study of rotatable renewable energy system for stratospheric airship[J].Energy Conversion and Management, 2017, 140:51-61. doi: 10.1016/j.enconman.2017.02.069
    [30]
    LV M, YAO Z, ZHANG L, et al.Effects of solar array on the thermal performance of stratospheric airship[J].Applied Thermal Engineering, 2017, 124:22-33. doi: 10.1016/j.applthermaleng.2017.06.018
    [31]
    LI X, FANG X, DAI Q.Research on thermal characteristics of photovoltaic array of stratospheric airship[J].Journal of Aircraft, 2011, 48(4):1380-1386. doi: 10.2514/1.C031295
    [32]
    LIANG H, ZHU M, WU Z.Using cross-validation to design trend function in Kriging surrogate modeling[J].AIAA Journal, 2014, 52(10):2313-2327. doi: 10.2514/1.J052879
    [33]
    ZHANG K S, HAN Z H, SONG B F.Flight performance analysis of hybrid airship:Revised analytical formulation[J].Journal of Aircraft, 2010, 47(4):1318-1330. doi: 10.2514/1.47294
    [34]
    CARRIÓN M, STEIJL R, BARAKOS G N, et al.Analysis of hybrid air vehicles using computational fluid dynamics[J].Journal of Aircraft, 2016, 53(4):1-12.
    [35]
    MATSUMOTO H, KUBOTA Y, OHISHI M, et al.Drag on a cylinder with an apple-shaped cross section[J].World Journal of Mechanics, 2016, 6(9):323. doi: 10.4236/wjm.2016.69024
    [36]
    HOERNER S F, BORST H V.Fluid-dynamic lift:Practical information on aerodynamic and hydrodynamic lift[M].Washington:L.A.Hoerner, 1985:96-126.
    [37]
    DORRINGTON G E.Drag of spheroid-cone shaped airship[J].Journal of Aircraft, 2006, 43(2):363-371. doi: 10.2514/1.14796
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views(778) PDF downloads(199) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return