Volume 47 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
JIN Zheyang, WANG Wenbin, LIU Jiangkaiet al. Center of mass estimation of Tiangong-2 spacecraft using GNSS measurement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 802-813. doi: 10.13700/j.bh.1001-5965.2020.0019(in Chinese)
Citation: JIN Zheyang, WANG Wenbin, LIU Jiangkaiet al. Center of mass estimation of Tiangong-2 spacecraft using GNSS measurement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 802-813. doi: 10.13700/j.bh.1001-5965.2020.0019(in Chinese)

Center of mass estimation of Tiangong-2 spacecraft using GNSS measurement

doi: 10.13700/j.bh.1001-5965.2020.0019
Funds:

Key Research Program of the Chinese Academy of Sciences ZDRW-KT-2019-1

CAS Joint Fund 6141A01011703

More Information
  • Corresponding author: WANG Wenbin, E-mail: wangwenbin@csu.ac.cn
  • Received Date: 15 Jan 2020
  • Accepted Date: 16 Oct 2020
  • Publish Date: 20 Apr 2021
  • Due to fuel consumption of orbital maneuvers, payloads' load and separation, and the release of small satellite, the Center of Mass(COM) of Tiangong-2 space laboratory moves. To solve this problem, a reduced orbit dynamic determination and COM estimation method is given based on Global Navigation Satellite System (GNSS) measurement data in this paper. Fuel consumption is the main reason for the COM of Tiangong-2 moves. The COM mainly moves along the X-axis of Tiangong-2 body-fixed coordinate system. The COM estimation and precise orbit determination of Tiangong-2 are performed using GNSS measurement data. And in a three-axis earth-pointing stabilization attitude mode, the orbit determination results are not sensitive to the displacement of COM in the X-axis of Tiangong-2 body-fixed coordinate system since the X-axis of Tiangong-2 body-fixed coordinate system coincides with the tangential direction of the orbit. However, in a yaw-steering mode, the X-axis of Tiangong-2 body-fixed coordinate system has a large projection on the orbital normal direction, which makes the displacement of COM in the X-axis of Tiangong-2 body-fixed coordinate system have a greater impact on the precision orbit determination results based on GNSS measurement calculation. And the qualitative and the quantitative analysis results show that the COM estimation is feasible in a yaw-steering attitude mode. Compared with the results without considering COM estimation, the Tiangong-2 measurement data calculation results considering COM estimation show that the empirical accelerations which represent orbital dynamics modeling error in the radial, tangential and normal directions are reduced by 62%, 50% and 65%, respectively, and the standard deviation of post-residuals of the carrier phase is reduced by 0.04 cm. Besides, the comparison accuracy of precision orbit data and the global laser ranging improves by 0.86 cm. The method proposed in this paper can be applied to COM estimation of the large-scale low-earth-orbit spacecraft.

     

  • loading
  • [1]
    MONTENBRUCK O, VAN H T, KROES R, et al. Reduced dynamic orbit determination using GPS code and carrier measurements[J]. Aerospace Science and Technology, 2005, 9(3): 261-271. doi: 10.1016/j.ast.2005.01.003
    [2]
    秦建, 郭金运, 孔巧丽, 等. Jason-2卫星星载GPS数据cm级精密定轨[J]. 武汉大学学报(信息科学版), 2014, 39(2): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201402003.htm

    QIN J, GUO J Y, KONG Q L, et al. Precise orbit determination of Jason-2 with precision of centimeters based on satellite-borne GPS technique[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 137-141(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201402003.htm
    [3]
    LI K, ZHOU X, WANG W, et al. Centimeter-level orbit determination for TG02 spacelab using onboard GNSS data[J]. Sensors, 2018, 18(8): 2671. doi: 10.3390/s18082671
    [4]
    张强. 采用GPS与北斗的低轨卫星及其编队精密定轨关键技术研究[D]. 武汉: 武汉大学, 2018: 22-35.

    ZHANG Q. Research on the key technologies of precise orbit determination for low earth orbit satellites and their formation using GPS and BDS[D]. Wuhan: Wuhan University, 2018: 22-35(in Chinese).
    [5]
    秦显平. 星载GPS低轨卫星定轨理论及方法研究[J]. 测绘科学与工程, 2010, 30(1): 77-78. https://cdmd.cnki.com.cn/Article/CDMD-90008-1011057310.htm

    QIN X P. Research on precision orbit determination theory and method of low earth orbiter based on GPS technique[J]. Science of Surveying and Mapping, 2010, 30(1): 77-78(in Chinese). https://cdmd.cnki.com.cn/Article/CDMD-90008-1011057310.htm
    [6]
    BRUINSMA S, TAMAGNAN D, BIANCALE R. Atmospheric densities derived from CHAMP/STAR accelerometer observations[J]. Planetary and Space Science, 2004, 52(4): 297-312. doi: 10.1016/j.pss.2003.11.004
    [7]
    戴小蕾. 基于平方根信息滤波的GNSS导航卫星实时精密定轨理论与方法[D]. 武汉: 武汉大学, 2016: 18-20.

    DAI X L. Real-time precise GNSS satellite orbit determination using the SRIF method: Theory and implementation[D]. Wuhan: Wuhan University, 2016: 18-20(in Chinese).
    [8]
    刘伟, 俞洁, 杨立峰, 等. GEO卫星在轨横向质心快速估算方法[J]. 航天器工程, 2016, 25(5): 39-44. doi: 10.3969/j.issn.1673-8748.2016.05.006

    LIU W, YU J, YANG L F, et al. Method of in-orbit lateral centroid fast estimation of GEO satellite[J]. Spacecraft Engineering, 2016, 25(5): 39-44(in Chinese). doi: 10.3969/j.issn.1673-8748.2016.05.006
    [9]
    TANYGIN S, WILLIAMS T. Mass property estimation using coasting maneuvers[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 625-632. doi: 10.2514/2.4099
    [10]
    郭正勇, 张增安, 汪礼成, 等. 一种基于推力器控制的卫星质心在轨估算方法研究[J]. 上海航天, 2017, 34(5): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201705012.htm

    GUO Z Y, ZHANG Z A, WANG L C, et al. Study of on-orbit estimation method of satellite'centroid based on thrust control[J]. Aerospace Shanghai, 2017, 34(5): 76-82(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201705012.htm
    [11]
    谭沧海, 梁翠娜, 薛宏伟. 伪距定位算法中天线相位中心偏差的修正及误差分析[J]. 现代导航, 2017, 8(5): 328-333. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDH201705004.htm

    TAN C H, LIANG C N, XUE H W. Analysis and correction of antenna phase center offsets on pseudo-range positioning algorithm[J]. Modern Navigation, 2017, 8(5): 328-333(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDDH201705004.htm
    [12]
    辛宁, 邱乐德, 张立华, 等. 一种重力卫星质心在轨标定算法[J]. 中国空间科学技术, 2013, 33(4): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201304004.htm

    XIN N, QIU L D, ZHANG L H, et al. Study on on-orbit calibration of center of mass for gravity satellite[J]. Chinese Space Science and Technology, 2013, 33(4): 9-15(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ201304004.htm
    [13]
    李洪银, 屈少波, 白彦峥, 等. 静电悬浮加速度计在轨质心位置的最小二乘估计[J]. 地球物理学报, 2017, 60(3): 897-902. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201703005.htm

    LI H Y, QU S B, BAI Y Z, et al. Least squares estimation of in-orbit mass center position of the electrostatic accelerometer[J]. Chinese Journal of Geophysics, 2017, 60(3): 897-902(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201703005.htm
    [14]
    陈光锋, 唐富荣, 薛大同. 重力卫星在轨质心修正原理[J]. 宇航学报, 2005, 26(5): 567-570. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200505007.htm

    CHEN G F, TANG F R, XUE D T. The trim principle of center of mass of gravity satellite during orbit flight[J]. Journal of Astronautics, 2005, 26(5): 567-570(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB200505007.htm
    [15]
    WANG W, LIU J, SHUA L, et al. Precise orbit determination of large-scale spacecraft in low earth orbit: Preliminary results[C]//Proceedings of the 68th International Astronautical Congress (IAC), 2017: 3-12.
    [16]
    SHAO K, GU D, JU B, et al. Analysis of Tiangong-2 orbit determination and prediction using onboard dual-frequency GNSS data[J]. GPS Solutions, 2020, 24(1): 11. doi: 10.1007/s10291-019-0927-y
    [17]
    KROES R. Precise relative positioning of formation flying spacecraft using GPS[D]. The Netherland: Delft University of Technology, 2006: 56-63.
    [18]
    WANG W, GAO Y. Effective empirical acceleration modeling and its application to enhanced-accuracy orbit prediction[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2016, 14(30): 39-45. doi: 10.2322/tastj.14.pd_39
    [19]
    JIA T U, GU D F, YI W U, et al. Phase residual estimations for PCVs of spaceborne GPS receiver antenna and their impacts on precise orbit determination of GRACE satellites[J]. Chinese Journal of Aeronautics, 2012, 25(4): 631-639. http://www.cnki.com.cn/Article/CJFDTotal-HKXS201204017.htm
    [20]
    RIM H J, YOON S, SCHUTZ B, et al. Effect of center of mass position error on icesat precision orbit determination[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston: AIAA, 2010: 77-79.
    [21]
    CHOI K R. Jason-1 precision orbit determination using GPS combined with SLR and DORIS tracking data[D]. Austin: The University of Texas at Austin, 2003: 43-47.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(9)

    Article Metrics

    Article views(706) PDF downloads(144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return