Volume 47 Issue 5
May  2021
Turn off MathJax
Article Contents
WANG Xinglong, MIAO Shangfei. Structural characteristics analysis and resilience assessment of airspace sector network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 904-911. doi: 10.13700/j.bh.1001-5965.2020.0084(in Chinese)
Citation: WANG Xinglong, MIAO Shangfei. Structural characteristics analysis and resilience assessment of airspace sector network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 904-911. doi: 10.13700/j.bh.1001-5965.2020.0084(in Chinese)

Structural characteristics analysis and resilience assessment of airspace sector network

doi: 10.13700/j.bh.1001-5965.2020.0084
Funds:

the Fundamental Research Funds for the Central Universities 3122019191

More Information
  • Corresponding author: WANG Xinglong, E-mail:xinglong1979@163.com
  • Received Date: 05 Mar 2020
  • Accepted Date: 30 May 2020
  • Publish Date: 20 May 2021
  • In order to ensure the safety of aircraft operations in the sector, improve the resilience of the sector network under external disturbance, and thereby effectively reduce flight delays and airspace congestion, by using complex network theory, an airspace sector network model of China is established based on airspace sector division rules. Then, the structural characteristics of airspace sector network are analyzed by defining basic network parameters. In addition, the concept of sector network resilience is defined and a quantitative evaluation method is used to measure it. Finally, resilience indicators under different recovery strategies are comparatively analyzed, so as to develop the optimal recovery strategy of the sector network under external disturbance and improve the network resilience. The results show that the airspace sector network of China has a lengthy average shortest path and a small clustering coefficient. The degree distribution follows a double power-law distribution and the cumulative distributions of betweenness follow an exponential distribution. Among them, betweenness has the greatest impact on the resilience of airspacesector network. Adopting the betweenness recovery strategy can significantly improve the airspacesector network resilience under external disturbance.

     

  • loading
  • [1]
    曾小舟. 基于复杂网络理论的中国航空网络结构实证研究与分[D]. 南京: 南京航空航天大学, 2012: 15-30.

    ZENG X Z.Empirical research and analysis of Chinese aviation network structure based on complex network theory[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 15-30(in Chinese).
    [2]
    CAI K Q, ZHANG J, DU W B, et al. Analysis of the Chinese air route network as a complex network[J]. Chinese Physics B, 2012, 21(2): 596-602.
    [3]
    ZANIN M, LILLO F. Modelling the air transport with complex networks: A short review[J]. The European Physical Journal Special Topics, 2013, 215(1): 5-21. doi: 10.1140/epjst/e2013-01711-9
    [4]
    武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017, 38(S1): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2017S1015.htm

    WU X P, YANG H Y, HAN S C. Analysis of properties and delay propagation of air traffic based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 113-119(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2017S1015.htm
    [5]
    傅超琦, 王瑛, 李超, 等. 不同增长机制下航空网络自愈特性[J]. 北京航空航天大学学报, 2018, 44(6): 1221-1229. doi: 10.13700/j.bh.1001-5965.2017.0485

    FU C Q, WANG Y, LI C, et al. Research on self-healing characteristics of aviation network under different growth mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1221-1229(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0485
    [6]
    许欣华. 航空网络鲁棒性及延误传播相关性研究[D]. 南京: 南京航空航天大学, 2018: 9-21.

    XU X H.Research on robustness of air transportation network and flight delay correlation[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 9-21(in Chinese).
    [7]
    REN G J, LU C Y, ZHU J, et al. Analyzing the topological characteristic and key nodes of Chinese air sector network[J]. International Journal of Modern Physics B, 2019, 33(11): 2-21. doi: 10.1142/S0217979219501005
    [8]
    HOSSEINI S, BARKER K, RAMIREZ-MARQUEZ J E. A review of definitions and measures of system resilience[J]. Reliability Engineering and System Safety, 2016, 145: 47-61. doi: 10.1016/j.ress.2015.08.006
    [9]
    NAN C, SANSAVINI G. A quantitative method for assessing resilience of interdependent infrastructures[J]. Reliability Engineering and System Safety, 2017, 157: 35-53. doi: 10.1016/j.ress.2016.08.013
    [10]
    崔琼, 李建华, 冉淏丹, 等. 基于任务能力的指挥信息系统超网络弹性度量[J]. 指挥与控制学报, 2017, 3(2): 137-143. doi: 10.3969/j.issn.2096-0204.2017.02.0137

    CUI Q, LI J H, RAN H D, et al. Resilience measurement of command information system super-networkbased on mission capability[J]. Journal of Command and Control, 2017, 3(2): 137-143(in Chinese). doi: 10.3969/j.issn.2096-0204.2017.02.0137
    [11]
    崔琼, 李建华, 王宏, 等. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201804018.htm

    CUI Q, LI J H, WANG H, et al. Resilience analysis model of networked command information system based on node repairability[J]. Computer Science, 2018, 45(4): 117-121(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201804018.htm
    [12]
    TANG J Q, RUDOLF H H, MA X L. A resilience-oriented approach for quantitatively assessing recurrent spatial-temporal congestion on urban roads[J]. Plos One, 2018, 13(1): e0190616. doi: 10.1371/journal.pone.0190616
    [13]
    胡玉, 顾洁, 马睿, 等. 面向配电网弹性提升的智能软开关鲁棒优[J]. 电力自动化设备, 2019, 39(11): 85-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS201911014.htm

    HU Y, GU J, MA R, et al. SNOP robust optimization for distribution network resilience enhancement[J]. Electric Power Automation Equipment, 2019, 39(11): 85-91(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS201911014.htm
    [14]
    WANG Y J, ZHAN J M, XU X H, et al. Measuring the resilience of an airport network[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2694-2705. doi: 10.1016/j.cja.2019.08.023
    [15]
    ADGER W N. Social and ecological resilience: Are they related [J]. Progress in Human Geography, 2000, 24(3): 347-364. doi: 10.1191/030913200701540465
    [16]
    ROSE A, LIAO S Y. Modeling regional economic resilience to disasters: A computable general equilibrium analysis of water service disruptions[J]. Social Science Electronic Publishing, 2005, 45(1): 75-122. http://www.tandfonline.com/servlet/linkout?suffix=CIT0027&dbid=16&doi=10.1080%2F09535314.2017.1369010&key=10.1111%2Fj.0022-4146.2005.00365.x
    [17]
    DINH L T T, PASMAN H, GAO X, et al. Resilience engineering of industrial processes: Principles and contributing factors[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(2): 233-241. doi: 10.1016/j.jlp.2011.09.003
    [18]
    徐野. 复杂互联系统与网络鲁棒性研究[M]. 北京: 电子工业出版社, 2015: 37-40.

    XU Y. Study of robustness in complex interconnected system and networks[M]. Beijing: Publishing House of Electronics Industry, 2015: 37-40(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(638) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return