Volume 47 Issue 5
May  2021
Turn off MathJax
Article Contents
HAO Shuai, MA Tielin, WANG Yi, et al. Aeroelastic characteristics of hypersonic vehicle tail at high angle of attack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 983-993. doi: 10.13700/j.bh.1001-5965.2020.0089(in Chinese)
Citation: HAO Shuai, MA Tielin, WANG Yi, et al. Aeroelastic characteristics of hypersonic vehicle tail at high angle of attack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 983-993. doi: 10.13700/j.bh.1001-5965.2020.0089(in Chinese)

Aeroelastic characteristics of hypersonic vehicle tail at high angle of attack

doi: 10.13700/j.bh.1001-5965.2020.0089
Funds:

National Natural Science Foundation of China 91216102

More Information
  • Corresponding author: MA Tielin, E-mail: matielin@buaa.edu.cn
  • Received Date: 10 Mar 2020
  • Accepted Date: 30 May 2020
  • Publish Date: 20 May 2021
  • During the flight of near space hypersonic vehicles, the external disturbances may result in high angle of attack conditions. And the off-design conditions may lead to a large deflection angle of the all-movable tail, which brings aeroelastic problem. Aimed at solving the aeroelastic problems, aeroelastic characteristics were analyzed by the CFD/CSD/CTD coupled method for the all-movable tail, and especially the aerodynamic response and structural deformation were focused on. The results show that aerodynamic response curves fluctuate and gradually decay to equilibrium position. The larger the attack angle is, the greater the initial amplitude is, the larger the proportion of aerodynamic coefficient decreases, and the amplitude decays faster. Bending/torsion coupling deformation occurs in the tail structure, and the structural deformation leads to the change of pressure distribution, the reduction of the whole pressure and the decrease of lift coefficient. The larger the attack angle is, the greater the decrease is. The maximum stress of the tail reaches 1.2 GPa at 30° angle of attack, which has reached yield strength limit of the nickel alloy material. It should be strengthened for the region where wing axis contacts with tail, or it should be limited for the operating angle in control law design. Axial deformation is mainly caused by aerodynamic thermal load, and normal deformation is caused by aerodynamic thermal load and aerodynamic force load.

     

  • loading
  • [1]
    OPPENHEIMER M W, DOMAN D B, MCNAMARA J J, et al. Viscous effects for a hypersonic vehicle model[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2008: 374-387.
    [2]
    YENTSCH R J, GAITONDE D V, KIMMEL R. Performance of turbulence modeling in simulation of the HIFiRE-1 flight test[J]. Journal of Spacecraft and Rockets, 2014, 51(1): 117-127. doi: 10.2514/1.A32535
    [3]
    WROBLE V. SR-72 could be obsolete[J]. Aviation Week & Space Technology, 2013, 175(42): 10. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204110858977.html
    [4]
    LIGHTHILL M J. Oscillating airfoils at high Mach numbers[J]. Journal of Aeronautical Science, 1953, 20(6): 402-406. doi: 10.2514/8.2657
    [5]
    ASHLEY H, ZARTARIAN G. Piston-theory: A new aerodynamic tool for the aeroelastician[J]. Journal of Aeronautical Science, 1956, 23(12): 209-222.
    [6]
    LAUTEN W T J, LEVEY G M, ARMSTRONG W O. Investigation of an all-movable control surface at a Mach number of 6.86 for possible flutter[J]. Technical Report Archive & Image Library, 1958, 14(5): 19-22.
    [7]
    GOETZ R C. Effects of leading-edge bluntness on flutter characteristics of some square-planform double-wedge airfoils at a Mach number of 15.4[M]. Champaign: National Aeronautics and Space Administration, 1962: 10-19. http://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/020711171744.html
    [8]
    HEEG J, ZEILER T A, POTOTZKY A S, et al. Aerothermoelastic analysis of a NASP demostrator model[C]//Proceedings of the 34th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2013: 1993-1366.
    [9]
    LIU D D, YAO Z X, SARHADDI D, et al. From piston theory to a unified hypersonic-supersonic lifting surface method[J]. Journal of Aircraft, 1997, 34(3): 304-312. doi: 10.2514/2.2199
    [10]
    陈劲松, 曹军. 超声速和高超声速翼型非定常气动力的一种近似计算方法[J]. 空气动力学学报, 1990, 8(3): 339-344. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX199003014.htm

    CHEN J S, CAO J. An approximate calculating method of supersonic/hypersonic unsteady aerodynamic forces of airfoils[J]. Acta Aerodynamica Sinica, 1990, 8(3): 339-344(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX199003014.htm
    [11]
    杨炳渊, 宋伟力. 用当地流活塞理论计算大攻角翼面超音速颤振[J]. 振动与冲击, 1995, 14(2): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ502.012.htm

    YANG B Y, SONG W L. Supersonic flutter calculation of a wing with attack angle by local flow piston theory[J]. Journal of Vibration and Shock, 1995, 14(2): 60-63(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ502.012.htm
    [12]
    MCNAMARA J J, FRIEDMANN P P. Flutter boundary identification for time-domain computational aeroelasticity[J]. AIAA Journal, 2007, 45(7): 1546-1555. doi: 10.2514/1.26706
    [13]
    MCNAMARA J J, CROWELL A R, FRIEDMANN P P, et al. Approximate modeling of unsteady aerodynamics for hypersonic aeroelasticity[J]. Journal of Aircraft, 2010, 47(6): 1932-1945. doi: 10.2514/1.C000190
    [14]
    MCNAMARA J J, FRIEDMANN P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow: Past, present, and future[J]. AIAA Journal, 2011, 49(6): 1089-1122. doi: 10.2514/1.J050882
    [15]
    张伟伟, 叶正寅. 基于当地流活塞理论的气动弹性计算方法研究[J]. 力学学报, 2005, 37(5): 632-639. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200505015.htm

    ZHANG W W, YE Z Y. Numerical method of aeroelasticity based on local piston theory[J]. Acta Mechanica Sinica, 2005, 37(5): 632-639(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200505015.htm
    [16]
    GUPTA K, VOELKER L S. CFD-based aeroelastic analysis of the X-43 hypersonic flight vehicle[C]//39th Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2001.
    [17]
    GUPTA K, BACH C. Computational fluid dynamics-based aeroservoelastic analysis with Hyper-X applications[J]. AIAA Journal, 2007, 45(7): 1459-1471. doi: 10.2514/1.21992
    [18]
    GUPTA K K, VOELKER L S. Aeroelastic simulation of hypersonic flight vehicles[J]. AIAA Journal, 2012, 50(3): 717-723. doi: 10.2514/1.J051386
    [19]
    ZENG K C, XIANG J W, LI D C. Aeroservoelastic modeling and analysis of a canard-configured air-breathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2013, 26(4): 831-840. doi: 10.1016/j.cja.2013.06.001
    [20]
    史晓鸣, 梅睿, 苏轶龙, 等. 舵轴位置对全动舵面气动弹性稳定性影响[J]. 噪声与振动控制, 2016, 36(3): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201603018.htm

    SHI X M, MEI R, SU Y L, et al. Influence of rudder shaft location on aeroelastic stablity of an all-moving rudder[J]. Noise and Vibration Control, 2016, 36(3): 81-84(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201603018.htm
    [21]
    王文全, 张立翔. 计算流固耦合动力学及其应用[M]. 北京: 中国水利水电出版社, 2015: 2-12.

    WANG W Q, ZHANG L X. Computational fluid-structure interaction dynamics and applications[M]. Beijing: China Water & Power Press, 2015: 2-12(in Chinese).
    [22]
    聂雪媛, 黄程德, 杨国伟. 基于CFD/CSD耦合的结构几何非线性静气动弹性数值方法研究[J]. 振动与冲击, 2016, 35(8): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608008.htm

    NIE X Y, HUANG C D, YANG G W. Numerical analysis for aeroelastic with structural geometrical nonlinearity using a CFD/CSD coupled method[J]. Journal of Vibration and Shock, 2016, 35(8): 48-53(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608008.htm
    [23]
    周迪, 陆志良, 郭同庆, 等. 基于CFD/CSD耦合的叶轮机叶片失速颤振计算[J]. 航空学报, 2015, 36(4): 1076-1085. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504005.htm

    ZHOU D, LU Z L, GUO T Q, et al. Stall flutter computation of turbomachinery blade based on a CFD/CSD coupling method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1076-1085(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504005.htm
    [24]
    DUKOWICZ J K, KODIS J W. Accurate conservative remapping(rezoning) for arbitrary Lagrangian-Eulerian computations[J]. Journal on Scientific and Statistical Computing, 1987, 8(3): 305-321. doi: 10.1137/0908037
    [25]
    BENSON D J, HALLQUIST J O. A single surface contact algorithm for the post-buckling analysis of shell structures[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 78(2): 141-163. doi: 10.1016/0045-7825(90)90098-7
    [26]
    JANSEN K, SHAKIB F, HUGHES T J R. Fast projection algorithm for unstructured meshes[J]. Computational Nonlinear Mechanics in Aerospace Engineering, 1992, 146(5): 175-204.
    [27]
    WIETING A R, HOLDEN M S. Experimental study of shock wave interference heating on a cylindrical leading edge at Mach 6 and 8[C]//Proceedings of the AIAA 22nd Thermophysics Conference. Reston: AIAA, 1987.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(5)

    Article Metrics

    Article views(648) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return