Volume 47 Issue 5
May  2021
Turn off MathJax
Article Contents
LU Tingting, ZHANG Yao, YAN Yan, et al. A crater region detection algorithm based on automatic feature learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 939-952. doi: 10.13700/j.bh.1001-5965.2020.0109(in Chinese)
Citation: LU Tingting, ZHANG Yao, YAN Yan, et al. A crater region detection algorithm based on automatic feature learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 939-952. doi: 10.13700/j.bh.1001-5965.2020.0109(in Chinese)

A crater region detection algorithm based on automatic feature learning

doi: 10.13700/j.bh.1001-5965.2020.0109
More Information
  • Corresponding author: LU Tingting, E-mail:tingtingspring@163.com
  • Received Date: 22 Mar 2020
  • Accepted Date: 17 Apr 2020
  • Publish Date: 20 May 2021
  • The crater-based navigation technology has been become a novel and precise autonomous navigation method in space exploration, and how to extract the crater regions from the crater navigation image is the essential condition of the crater-based navigation method. Accordingly, in this paper, we propose an algorithm for extracting crater regions via automatic feature learning. First, the candidate crater regions were obtained by the maximal stable external region method. Then, the features of these regions were automatically extracted by Convolutional Neural Network (CNN). Finally, the true crater regions were identified from all the candidate regions through Support Vector Machine (SVM) classifier. The experimental results demonstrate that the proposed algorithm can extract crater regions from the navigation image with higher accuracy and robustness than the traditional crater region detection algorithms based on the handcrafted features. The proposed algorithm obtains an F1 score which is 8% higher than that of the traditional method on the standard Mars surface crater database, and can be applied in the crater detection of the crater-based visual navigation method to provide the precise navigation landmarks.

     

  • loading
  • [1]
    LU T, HU W, LIU C, et al. Relative pose estimation of a lander using crater detection and matching[J]. Optical Engineering, 2016, 55(2): 1-24. http://adsabs.harvard.edu/abs/2016OptEn..55b3102L
    [2]
    YU M, CUI H, TIAN Y. A new approach based on crater detection and matching for visual navigation in planetary landing[J]. Advances in Space Research, 2014, 53(12): 1810-1821. doi: 10.1016/j.asr.2013.04.011
    [3]
    TIAN Y, YU M, YAO M B, et al. Crater edge-based flexible autonomous navigation for planetary landing[J]. The Journal of Navigation, 2019, 72(3): 649-668. doi: 10.1017/S0373463318000966
    [4]
    YU M, LI S, WANG S, et al. Single crater-aided inertial navigation for autonomous asteroid landing[J]. Advances in Space Research, 2019, 63(2): 1085-1099. doi: 10.1016/j.asr.2018.09.035
    [5]
    MAASS B, WOICKE S, OLIVEIRA W M, et al. Crater navigation system for autonomous precision landing on the moon[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(11): 1-18. http://www.researchgate.net/publication/340791531_Crater_Navigation_System_for_Autonomous_Precision_Landing_on_the_Moon
    [6]
    VIJAYAN S, VANI K, SANJEEVI S. Crater detection, classification and contextual information extraction in lunar images using a novel algorithm[J]. Icarus, 2013, 226(1): 798-815. doi: 10.1016/j.icarus.2013.06.028
    [7]
    JAIN A, SURESH K, THAKORE D, et al. Automatic crater detection on lunar surface[J]. International Journal of Innovative Research in Science Engineering & Technology, 2013, 2(5): 1448-1453. http://www.researchgate.net/publication/288900777_Automatic_crater_detection_on_Lunar_surface
    [8]
    BANDEIRA L, SARAIVA J, PINA P. Impact crater recognition on mars based on a probability volume created by template matching[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 4008-4015. doi: 10.1109/TGRS.2007.904948
    [9]
    LI K, MU L, LIU J, et al.Impact crater detection based on regional segmentation using Chang'E-1 CCD data[C]//Proceedings of International Congress on Image and Signal Processing.Piscataway: IEEE Press, 2011: 1911-1915.
    [10]
    SAWABE Y, MATSUNAGA T, ROKUGAWA S. Automated detection and classification of lunar craters using multiple approaches[J]. Advances in Space Research, 2006, 37(1): 21-27. doi: 10.1016/j.asr.2005.08.022
    [11]
    WEISMULLER T, CABALLERO D, LEINZ M.Technology for autonomous optical planetary navigation and precision landing[C]//Proceedings of AIAA SPACE 2007 Conference & Exposition.Reston: AIAA, 2007: 1-26.
    [12]
    SADHUKHAN P, PALIT S.Fast autonomous crater detection by image analysis-for unmanned landing on unknown terrain[C]//Proceedings of Image and Signal Processing.Berlin: Springer, 2016: 293-303.
    [13]
    LEROY B, MEDINONI G, JOHNSON E, et al. Crater detection for autonomous landing on asteroids[J]. Image & Vision Computing, 2001, 19(11): 787-792.
    [14]
    CHENG Y, MILLER J K. Autonomous landmark based spacecraft navigation system[J]. Advances in the Astronautical Sciences, 2003, 114(3): 1769-1783. http://www.mendeley.com/research/autonomous-landmark-based-spacecraft-navigation-system/
    [15]
    CHENG Y, JOHNSON A E, MATTHIES L H, et al.Optical landmark detection for spacecraft navigation[C]//Proceedings of AAS/AIAA Space Flight Mechanics Meeting.Reston: AIAA, 2003: 1-19.
    [16]
    MAMMARELLA M, RODRIGALVAREZ M A, PIZZICHINI A, et al. Advances in aerospace guidance, navigation and control[M]. Berlin: Springer, 2011: 419-430.
    [17]
    HE J, CUI H, FENG J.Edge information based crater detection and matching for lunar exploration[C]//Proceedings of International Conference on Intelligent Control and Information Processing.Piscataway: IEEE Press, 2010: 302-307.
    [18]
    FENG J, CUI P, CUI H.Autonomous hazard detection and landing point selecting for planetary landing[C]//Proceedings of International Symposium on Systems and Control in Aeronautics and Astronautics.Piscataway: IEEE Press, 2010: 1292-1296.
    [19]
    DING M, CAO Y, WU Q. Method of passive image based crater autonomous detection[J]. Chinese Journal of Aeronautics, 2009, 22(3): 301-306. doi: 10.1016/S1000-9361(08)60103-X
    [20]
    DING M, CAO Y F, WU Q X.Autonomous craters detection from planetary image[C]//Proceedings of International Conference on Innovative Computing Information and Control.Piscataway: IEEE Press, 2008: 443-448.
    [21]
    DING W, STEPINSKI T F, BANDEIRA L, et al.Automatic detection of craters in planetary images: An embedded framework using feature selection and boosting[C]//Proceedings of ACM Conference on Information and Knowledge Management.New York: ACM Press, 2010: 749-758.
    [22]
    DING W, STEPINSKI T F, MU Y, et al. Subkilometer crater discovery with boosting and transfer learning[J]. ACM Transactions on Intelligent Systems & Technology, 2011, 2(4): 1-22.
    [23]
    MARTINS R, PINA P, MARQUES J S, et al. Crater detection by a boosting approach[J]. IEEE Geoscience & Remote Sensing Letters, 2009, 6(1): 127-131. http://ieeexplore.ieee.org/document/4717240
    [24]
    BANDIEIRA L, DING W, STEPINSKI T F. Detection of sub-kilometer craters in high resolution planetary images using shape and texture features[J]. Advances in Space Research, 2012, 49(1): 64-74. doi: 10.1016/j.asr.2011.08.021
    [25]
    JIN S, ZHANG T. Automatic detection of impact craters on Mars using a modified adaboosting method[J]. Planetary and Space Science, 2014, 99(1): 112-117. http://www.sciencedirect.com/science/article/pii/S0032063314001196
    [26]
    COHEN J P, DING W. Crater detection via genetic search methods to reduce image features[J]. Advances in Space Research, 2014, 53(12): 1768-1782. doi: 10.1016/j.asr.2013.05.010
    [27]
    TAKEDA Y, AOYAMA N, TANAAMI T, et al. Study on crater detection using FLDA[J]. World Academy of Science Engineering & Technology, 2012, 6(11): 1373-1377. http://www.waset.org/Publication/study-on-crater-detection-using-flda/15708
    [28]
    LENA D, TED J S, JONATHAN P H.Deep learning crater detection for lunar terrain relative navigation[C]//Proceedings of AIAA Scitech 2020 Forum.Reston: AIAA, 2020: 1-12.
    [29]
    EMAMI E, AHMAD T, BEBIS G, et al. Crater detection using unsupervised algorithms and convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5373-5383. doi: 10.1109/TGRS.2019.2899122
    [30]
    LEE C. Automated crater detection on Mars using deep learning[J]. Planetary and Space Science, 2019, 170: 16-28. doi: 10.1016/j.pss.2019.03.008
    [31]
    NISTER D, STEWENIUS H.Linear time maximally stable extremal regions[C]//Proceeding of 10th European Conference on Computer Vision.Berlin: Springer, 2008: 183-196.
    [32]
    ROERDINK J B T M, MEIJSTER A. The watershed transform: Definitions, algorithms and parallelization strategies[J]. Fundamenta Informaticae, 2000, 41(1): 187-228. http://portal.acm.org/citation.cfm?id=341161
    [33]
    SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//Procceeding of ICLR, 2015: 1-14.
    [34]
    CHERON G, LAPTEV I, SCHMID C.P-CNN: Pose-based CNN features for action recognition[C]//Proceedings of IEEE International Conference on Computer Vision.Piscataway: IEEE Press, 2015: 3218-3226.
    [35]
    KOBCHAISAWAT T, CHALIDABHONGSE T H.Thai text localization in natural scene images using convolutional neural network[C]//Proceedings of Signal and Information Processing Association Annual Summit and Conference (APSIPA).Piscataway: IEEE Press, 2015: 1-7.
    [36]
    RANJAN R, PATEL V M, CHELLAPPA R.A deep pyramid deformable part model for face detection[C]//Proceedings of IEEE International Conference on Biometrics Theory, Applications and Systems.Piscataway: IEEE Press, 2015: 1-8.
    [37]
    SHARIF R A, AZIZPOUR H, SULLIVAN J, et al.CNN features off-the-shelf: An astounding baseline for recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Piscataway: IEEE Press, 2014: 806-813.
    [38]
    VIOLA P A, JONES M J.Detecting pedestrians using patterns of motion and appearance in videos: US7212651B2[P].2007-05-01.
    [39]
    DALAL N, TRIGGS B.Histograms of oriented gradients for human detection[C]//Proceedings of Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2005: 886-893.
    [40]
    PIETIKINEN M, HADID A, ZHAO G, et al. Computer vision using local binary patterns[M]. Berlin: Springer, 2011: 3-10.
    [41]
    SZARVAS M, YOSHIZAWA A, YAMAMOTO M, et al.Pedestrian detection with convolutional neural networks[C]//Proceedings of Intelligent Vehicles Symposium.Piscataway: IEEE Press, 2005: 224-229.
    [42]
    NIU X X, SUEN C Y. A novel hybrid CNN-SVM classifier for recognizing handwritten digits[J]. Pattern Recognition, 2012, 45(4): 1318-1325. doi: 10.1016/j.patcog.2011.09.021
    [43]
    ZHANGL L, SHI Z, WU J. A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10): 1-15. doi: 10.1109/JSTARS.2016.2514638
    [44]
    Math Works.Pretrained convolutional neural networks[EB/OL].[2020-02-24].https://cn.mathworks.com/help/nnet/ug/pretrained-convolutional-neural-networks.html.
    [45]
    Knowledge Discovery Lab.Crater datbase[EB/OL].[2020-02-15].http://kdl.cs.umb.edu/w/datasets/craters/.
    [46]
    LU T, HU W, JIANG Z.An effective algorithm for generation of crater gray image[C]//Proceedings of IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications.Piscataway: IEEE Press, 2015: 1-6.
    [47]
    陆婷婷, 李潇, 张尧, 等. 基于三维点云模型的空间目标光学图像生成技术[J]. 北京航空航天大学学报, 2020, 46(2): 274-286. doi: 10.13700/j.bh.1001-5965.2019.0189

    LU T T, LI X, ZHANG Y, et al. A technology for generation of space object optical image based on 3D point cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 274-286(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0189
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(6)

    Article Metrics

    Article views(700) PDF downloads(206) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return