Volume 47 Issue 5
May  2021
Turn off MathJax
Article Contents
CHEN Qingya, CHE Xueke, TONG Yiheng, et al. Influence of surface dielectric barrier discharge on diffusion flame combustion characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 1015-1024. doi: 10.13700/j.bh.1001-5965.2020.0113(in Chinese)
Citation: CHEN Qingya, CHE Xueke, TONG Yiheng, et al. Influence of surface dielectric barrier discharge on diffusion flame combustion characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 1015-1024. doi: 10.13700/j.bh.1001-5965.2020.0113(in Chinese)

Influence of surface dielectric barrier discharge on diffusion flame combustion characteristics

doi: 10.13700/j.bh.1001-5965.2020.0113
Funds:

National Natural Science Foundation of China 51876219

National Natural Science Foundation of China 51777214

More Information
  • Corresponding author: NIE Wansheng, E-mail:nws1969@126.com
  • Received Date: 25 Mar 2020
  • Accepted Date: 24 Apr 2020
  • Publish Date: 20 May 2021
  • The plasma excited by Surface Dielectric Barrier Discharge (SDBD) owns both significant aerodynamic effect and chemical activation effect. In order to analyze the combustion-assisted effect of surface dielectric barrier discharge on shear-coaxial air/methane diffusion flame, the reverse excitation of plasma induced jet is applied to the flame through the use of high-frequency AC power supply in the experiment, and the influence of plasma on the flame combustion characteristics under different combustion conditions is investigated according to the obtained jet flow field schlieren photograph, flame image and CH* spontaneous emission. The results show that the air/methane mixing of elongated shear layer in the upstream of flame is enhanced under the plasma aerodynamic excitation, which enlarges the combustion width of the shear layer. And the combustion heat release rate is also significantly increased, which is mainly related to the plasma activation effect, and the activation effect significantly enhances the combustion intensity of base flame at nozzle outlet. Both the turbulence intensity and jet angle of the flame downstream can be effectively increased with plasma aerodynamic excitation at a reasonably low air flow rate, making the flame height reduced and the flame width enlarged, and the effect tends to be more obvious with a higher discharge voltage.

     

  • loading
  • [1]
    STARIKOVSKIY A, ALEKSANDROV N.Plasma-assisted ignition and combustion[J].Progress in Energy and Combustion Science, 2013, 39(1):61-110. doi: 10.1016/j.pecs.2012.05.003
    [2]
    韦宝禧, 欧东, 闫明磊, 等.超燃燃烧室等离子体点火和火焰稳定性能[J].北京航空航天大学学报, 2012, 38(12):1572-1576. https://bhxb.buaa.edu.cn/CN/Y2012/V38/I12/1572

    WEI B X, OU D, YAN M L, et al.Ignition and flame holding ability of plasma torch igniter in a supersonic flow[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(12):1572-1576(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2012/V38/I12/1572
    [3]
    SHAO T, WANG R, ZHANG C, et al.Atmospheric-pressure pulsed discharge and plasma:Mechanism, characteristics, and application[J].High Voltage, 2018, 3(1):14-20. doi: 10.1049/hve.2016.0014
    [4]
    KOZATO Y, KIKUCHI S, IMAO S, et al.Flow control of a rectangular jet by DBD plasma actuators[J].International Journal of Heat and Fluid Flow, 2016, 62(12):33-43.
    [5]
    BENARD N, BALCON N, TOUCHARD G, et al.Control of diffuser jet flow:Turbulent kinetic energy and jet spreading enhancements assisted by a non-thermal plasma discharge[J].Experiments in Fluids, 2008, 45(2):333-355. doi: 10.1007/s00348-008-0483-7
    [6]
    李亮, 李修乾, 车学科, 等.等离子体增强射流掺混的激励参数影响研究[J].实验流体力学, 2018, 32(5):43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201805006.htm

    LI L, LI X Q, CHE X K, et al.Study on the influence of incentive parameters on plasma-enhanced jet mixing[J].Journal of Experiments in Fluid Mechanics, 2018, 32(5):43-49(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201805006.htm
    [7]
    ZHOU S Y, SU L Y, SHI T Y, et al.Experimental study on the diffusive flame stabilization mechanism of plasma injector driven by AC dielectric barrier discharge[J].Journal of Physics D:Applied Physics, 2019, 52(26):265202. doi: 10.1088/1361-6463/ab15cd
    [8]
    GIORGI M G D, FICARELLA A, SCIOLTI A, et al.Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators[J].Energy, 2017, 126(5):689-706. http://www.sciencedirect.com/science/article/pii/S0360544217304176
    [9]
    李腾, 魏小林, 覃建果.非热等离子体对甲烷扩散火焰影响的实验研究[J].工程热物理学报, 2013, 34(3):572-575. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201303045.htm

    LI T, WEI X L, TAN J G.Experimental study on the effect of non-thermal plasma on methane diffusion flame[J].Journal of Engineering Thermophysics, 2013, 34(3):572-575(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201303045.htm
    [10]
    ASAKURA J, KIMURA M.Influence of coaxial dielectric barrier discharge plasma actuator on jet flame[C]//Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows.Berlin: Springer, 2016: 537-544.
    [11]
    KIMURA M, OKUYAMA K.Influence of nozzle exit velocity distribution on flame stability using a coaxial DBD plasma actuator[C]//Proceedings of the 3rd Symposium on Fluid-Structure-Sound Interactions and Control.Berlin: Springer, 2016: 235-239.
    [12]
    LI G, JIANG X, ZHAO Y, et al.Jet flow and premixed jet flame control by plasma swirler[J].Physics Letters A, 2017, 381(13):1158-1162. doi: 10.1016/j.physleta.2017.01.060
    [13]
    SHIM M, NOH K, YOON W.Flame structure of methane/oxygen shear coaxial jet with velocity ratio using high-speed imaging and OH*, CH* chemiluminescence[J].Acta Astronautica, 2018, 147(6):127-132. http://www.sciencedirect.com/science/article/pii/S0094576517316399
    [14]
    MIAO J, LEUNG C W, CHEUNG C S, et al.Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame[J].Energy, 2016, 104(6):284-294. http://www.sciencedirect.com/science/article/pii/S0360544216303619
    [15]
    CHOY Y S, ZHEN H S, LEUNG C W, et al.Pollutant emission and noise radiation from open and impinging inverse diffusion flames[J].Applied Energy, 2012, 91(1):82-89. doi: 10.1016/j.apenergy.2011.09.013
    [16]
    MIKOFSKI M A, WILLIAMS T C, SHADDIX C R, et al.Flame height measurement of laminar inverse diffusion flames[J].Combustion and Flame, 2006, 146(1-2):63-72. doi: 10.1016/j.combustflame.2006.04.006
    [17]
    邵涛, 章程, 王瑞雪, 等.大气压脉冲气体放电与等离子体应用[J].高电压技术, 2016, 42(3):685-705. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201603002.htm

    SHAO T, ZHANG C, WANG R X, et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J].High Voltage Engineering, 2016, 42(3):685-705(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201603002.htm
    [18]
    KIM T Y, CHOI S, KIM K K, et al.Combustion properties of gaseous CH4/O2 coaxial jet flames in a single-element combustor[J].Fuel, 2016, 184(11):28-35. http://www.sciencedirect.com/science/article/pii/S0016236116305968
    [19]
    HARDALUPSA Y, ORAIN M.Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminesecent emission from a flame[J].Combustion & Flame, 2004, 139(3):188-207.
    [20]
    MICKA D J, KNAUS D A, TEMME J B, et al.Passive optical combustion sensors for scramjet engine control:AIAA-2015-3947[R].Reston:AIAA, 2015:1-12.
    [21]
    TANG J, ZHAO W, DUAN Y.Some observations on plasma-assisted combustion enhancement using dielectric barrier discharges[J].Plasma Sources Science and Technology, 2011, 20(4):045009. doi: 10.1088/0963-0252/20/4/045009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(393) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return