Volume 47 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
ZHANG Qing, YE Zhengyin. Aerodynamic exploration for wavy airfoil based on NACA0030[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1138-1144. doi: 10.13700/j.bh.1001-5965.2020.0135(in Chinese)
Citation: ZHANG Qing, YE Zhengyin. Aerodynamic exploration for wavy airfoil based on NACA0030[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1138-1144. doi: 10.13700/j.bh.1001-5965.2020.0135(in Chinese)

Aerodynamic exploration for wavy airfoil based on NACA0030

doi: 10.13700/j.bh.1001-5965.2020.0135
Funds:

National High-tech Research and Development Program of China 2014AA7060201

National Natural Science Foundation of China 11732013

Natural Science Basic Research Program of Shaanxi 2019JM-290

More Information
  • Corresponding author: YE Zhengyin. E-mail: yezy@nwpu.edu.cn
  • Received Date: 13 Apr 2020
  • Accepted Date: 15 May 2020
  • Publish Date: 20 Jun 2021
  • Compared with smooth airfoil, the aerodynamic characteristics of wavy airfoil exhibit some unique features. In order to further explore the aerodynamic characteristics of the wavy configuration, based on the previous wind tunnel tests, a group of wavy airfoils with different geometric shape modified from NACA0030 were designed and then unsteady numerical simulations were carried out in details to investigate the effect of waviness on the vortical structure in the flow field and overall aerodynamic characteristics in low Reynolds number (Re=12×104) region. Final results show that, compared to the smooth airfoil, the separation flow for the wavy airfoil is more obvious, and the lift and its slope decrease significantly, but the stalling is delayed. The smoother the wavy surface is, the closer the aerodynamic characteristics are to the smooth airfoil. Although the pressure drag of the wavy wing is greater than that of the smooth airfoil, the recirculation generated in the corrugation can reduce the viscous drag.

     

  • loading
  • [1]
    谢长川, 王伟建, 杨超. 充气式机翼的颤振特性分析[J]. 北京航空航天大学学报, 2011, 37(7): 833-838. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I7/833

    XIE C C, WANG W J, YANG C. Flutter analysis of inflatable wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7): 833-838(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I7/833
    [2]
    华如豪, 叶正寅. 排式充气机翼的高效气动布局研究[J]. 空气动力学学报, 2012, 30(2): 184-191. doi: 10.3969/j.issn.0258-1825.2012.02.008

    HUA R H, YE Z Y. Research on effective aerodynamic configuration of row inflatable wings[J]. Acta Aerodynamica Sinica, 2012, 30(2): 184-191(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.02.008
    [3]
    张庆, 叶正寅. 一种基于充气气囊的垂尾抖振抑制新方法研究[J]. 工程力学, 2014, 31(12): 234-240. doi: 10.6052/j.issn.1000-4750.2013.06.0564

    ZHANG Q, YE Z Y. Study on a new method for suppression of vertical tail buffeting using inflatable bumps[J]. Engineering Mechanics, 2014, 31(12): 234-240(in Chinese). doi: 10.6052/j.issn.1000-4750.2013.06.0564
    [4]
    王伟, 王华, 贾清萍. 充气机翼承载能力和气动特性分析[J]. 航空动力学报, 2010, 25(10): 2296-2301. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201010024.htm

    WANG W, WANG H, JIA Q P. Analysis on bearing capacity and aerodynamic performance of an inflatable wing[J]. Journal of Aerospace Power, 2010, 25(10): 2296-2301(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201010024.htm
    [5]
    卫剑征, 谭惠丰, 王伟志, 等. 充气式再入减速器研究最新进展[J]. 宇航学报, 2013, 34(7): 881-890. doi: 10.3873/j.issn.1000-1328.2013.07.001

    WEI J Z, TAN H F, WANG W Z, et al. New trends in inflatable reentry aeroshell[J]. Journal of Astronautics, 2013, 34(7): 881-890(in Chinese). doi: 10.3873/j.issn.1000-1328.2013.07.001
    [6]
    张庆, 叶正寅. 一种新型可控方向的再入充气罩[J]. 应用力学学报, 2013, 30(4): 504-509. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201304008.htm

    ZHANG Q, YE Z Y. A new controllable inflatable shield for reentry[J]. Chinese Journal of Applied Mechanics, 2013, 30(4): 504-509(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201304008.htm
    [7]
    李爽, 江秀强. 火星进入减速器技术综述与展望[J]. 航空学报, 2015, 36(2): 422-440. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502003.htm

    LI S, JIANG X Q. Review and prospect of decelerator technologies for mars entry[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 422-440(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502003.htm
    [8]
    LI S, JIANG X. Review and prospect of guidance and control for mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69: 40-57. doi: 10.1016/j.paerosci.2014.04.001
    [9]
    张庆, 叶正寅. 排式双翼布局低雷诺数气动特性计算研究[J]. 工程力学, 2019, 36(10): 244-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201910028.htm

    ZHANG Q, YE Z Y. Computational investigations for aerodynamic characteristic analysis of low Reynolds number doubly-tandem wing configurations[J]. Engineering Mechanics, 2019, 36(10): 244-256(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201910028.htm
    [10]
    张庆, 叶正寅. 基于气动导数的类X-37B飞行器纵向稳定性分析[J]. 北京航空航天大学学报, 2020, 46(1): 77-85. doi: 10.13700/j.bh.1001-5965.2019.0188

    ZHANG Q, YE Z Y. Longitudinal stability analysis for X-37B like trans-atmospheric orbital test vehicle based on aerodynamic derivatives[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 77-85(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0188
    [11]
    吕强, 叶正寅, 李栋. 充气结构机翼的设计和试验研究[J]. 飞行力学, 2007, 25(4): 77-80. doi: 10.3969/j.issn.1002-0853.2007.04.021

    LV Q, YE Z Y, LI D. Design and capability analysis of an aircraft with inflatable wing[J]. Flight Dynamics, 2007, 25(4): 77-80(in Chinese). doi: 10.3969/j.issn.1002-0853.2007.04.021
    [12]
    HU H, TAMAI M. Bioinspired corrugated airfoil at low Reynolds numbers[J]. Journal of Aircraft, 2008, 45(6): 2068-2077. doi: 10.2514/1.37173
    [13]
    MURPHY J T, HU H. An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications[J]. Experiments in Fluids, 2010, 49(2): 531-546. doi: 10.1007/s00348-010-0826-z
    [14]
    YOKOZEKI T, SUGIURA A, HIRANO Y. Development of variable camber morphing airfoil using corrugated structure[J]. Journal of Aircraft, 2014, 51(3): 1023-1029. doi: 10.2514/1.C032573
    [15]
    HORD K, LIANG Y. Numerical investigation of the aerodynamic and structural characteristics of a corrugated airfoil[J]. Journal of Aircraft, 2012, 49(3): 749-757. doi: 10.2514/1.C031135
    [16]
    FLINT T J, JERMY M C, NEW T H, et al. Computational study of a pitching bio-inspired corrugated airfoil[J]. International Journal of Heat and Fluid Flow, 2017, 65: 328-341. doi: 10.1016/j.ijheatfluidflow.2016.12.009
    [17]
    TANG H, LEI Y, LI X, et al. Numerical investigation of the aerodynamic characteristics and attitude stability of a bio-inspired corrugated airfoil for MAV or UAV applications[J]. Energies, 2019, 12(20): 4021. doi: 10.3390/en12204021
    [18]
    BARNES C J, VISBAL M R. Numerical exploration of the origin of aerodynamic enhancements in low-Reynolds number corrugated airfoils[J]. Physics of Fluids, 2013, 25(11): 115106. doi: 10.1063/1.4832655
    [19]
    HO W H, NEW T H. Unsteady numerical investigation of two different corrugated airfoils[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(13): 2423-2437. doi: 10.1177/0954410016682539
    [20]
    SHI X, HUANG X, ZHENG Y, et al. Effects of cambers on gliding and hovering performance of corrugated dragonfly airfoils[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2016, 26(3/4): 1092-1120. http://smartsearch.nstl.gov.cn/paper_detail.html?id=9fb28e484051e2b447ddc8f459d7d5ea
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(629) PDF downloads(185) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return