Volume 47 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
MA Tielin, ZHANG Zilun, LIU Zhenchen, et al. Effect of rotor slipstream of tiltrotor aircraft in cruise mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1124-1137. doi: 10.13700/j.bh.1001-5965.2020.0177(in Chinese)
Citation: MA Tielin, ZHANG Zilun, LIU Zhenchen, et al. Effect of rotor slipstream of tiltrotor aircraft in cruise mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1124-1137. doi: 10.13700/j.bh.1001-5965.2020.0177(in Chinese)

Effect of rotor slipstream of tiltrotor aircraft in cruise mode

doi: 10.13700/j.bh.1001-5965.2020.0177
Funds:

Beijing Municipal Sci-Tech Program Z181100003218015

More Information
  • Corresponding author: LIU Zhenchen. E-mail: liuzhenchen@buaa.edu.cn
  • Received Date: 08 May 2020
  • Accepted Date: 11 Jul 2020
  • Publish Date: 20 Jun 2021
  • The tiltrotor aircraft needs to take into account the power requirements of vertical takeoff and landing and high-speed level flight, and using large diameter rotor as the propulsion device will make most of the wing in the rotor slipstream area, which is different from the conventional propeller aircraft. In order to evaluate different numerical methods and study the effect of rotor slipstream on the aerodynamic characteristics of a tiltrotor aircraft with two-blade rotor in cruise mode, the actuator disk model, the Multiple Reference Frame (MRF) model and the sliding mesh model are used respectively for numerical simulation study. The results show that, compared with no slipstream, the steady effect of slipstream increases the drag of the whole aircraft, and the maximum lift-drag ratio decreases by 7.5%. The lift generated by the tail wing is increased. The longitudinal static stability is increased by 17.1% and the pitch down moment of the whole aircraft is increased. When the angle of attack is small, although the slipstream changes the lift distribution on the wing surface, the lift of the whole aircraft does not change much. The unsteady influence of the slipstream causes periodic fluctuation of the aerodynamic characteristics of the aircraft. The fluctuation range of lift coefficient and drag coefficient are 9.0% and 10.8% respectively. With the increase of the angle of attack, the fluctuation range also increases.

     

  • loading
  • [1]
    MAISEL M D, GIULIANETTI D J, DUGAN D C. The history of the XV-15 rotor research aircraft: From concept to flight: NASA SP-2000-4517[R]. Washington, D.C. : NASA, 2000.
    [2]
    MATOS C, REDDY U, KOMERATH N. Rotor wake/fixed wing interactions with flap deflection[C]//55th American Helicopter Society Annual Forum, 1999: 1-12.
    [3]
    JOHNSON W. Airloads and wake geometry calculations for an isolated tiltrotor model in a wind tunnel[C]//27th European Rotorcraft Forum, 2001: 20030063077.
    [4]
    张铮, 陈仁良. 倾转旋翼机/机翼气动干扰理论与试验[J]. 航空学报, 2017, 38(3): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201703002.htm

    ZHANG Z, CHEN R L. Theory and test of rotor/wing aero-interaction in tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 31-39(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201703002.htm
    [5]
    招启军, 倪同兵, 李鹏, 等. 倾转旋翼机流动机理及气动干扰特性试验[J]. 航空动力学报, 2018, 33(12): 2900-2912. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201812010.htm

    ZHAO Q J, NI T B, LI P, et al. Experiment on flow mechanism and aerodynamic interaction characteristics of tilt-rotor aircraft[J]. Journal of Aerospace Power, 2018, 33(12): 2900-2912(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201812010.htm
    [6]
    李鹏. 倾转旋翼机非定常气动特性分析及气动设计研究[D]. 南京: 南京航空航天大学, 2015: 39-42.

    LI P. Researches on aerodynamic design and analyses on unsteady aerodynamic characteristics of the tiltrotor aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 38-42(in Chinese).
    [7]
    STRASH D, LEDNICER D, RUBIN T. Analysis of propeller-induced aerodynamic effects: AIAA-98-2414[R]. Reston: AIAA, 1998.
    [8]
    VELDHUIS L, NEBIOLO S. Analysis of calculated and measured wake characteristics of a propeller-wing model[C/OL]//38th Aerospace Sciences Meeting and Exhibit, 2000(2012-08-22)[2020-05-01]. https://doi.org/10.2514/6.2000-908.
    [9]
    李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4): 845-852. doi: 10.3321/j.issn:1000-6893.2008.04.013

    LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 845-852(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.04.013
    [10]
    赵寅宇, 黎鑫, 史勇杰, 等. 双拉力螺旋桨构型复合式高速直升机旋翼/螺旋桨干扰流场分析[J]. 南京航空航天大学学报, 2017, 49(2): 154-164. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201702002.htm

    ZHAO Y Y, LI X, SHI Y J, et al. Analysis on rotor-propellers interaction flowfield for compound double-thust-propeller high-speed helicopters[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(2): 154-164(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201702002.htm
    [11]
    夏贞锋. 螺旋桨滑流数值模拟方法及气动干扰研究[D]. 西安: 西北工业大学, 2015: 57-72.

    XIA Z F. Numerical approaches of propeller slipstream simulations and aerodynamic interference analysis[D]. Xi'an: Northwestern Polytechnical University, 2015: 57-72(in Chinese).
    [12]
    杨小川, 李伟, 王运涛, 等. 一种分布式螺旋桨运输机方案及其滑流效应研究[J]. 西北工业大学学报, 2019, 37(2): 361-368. doi: 10.3969/j.issn.1000-2758.2019.02.020

    YANG X C, LI W, WANG Y T, et al. Research on aerodynamic shape design scheme of a distributed propeller transport aircraft and its slipstream effect[J]. Journal of Northwestern Polytechnical University, 2019, 37(2): 361-368(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.02.020
    [13]
    陈广强, 白鹏, 詹慧玲, 等. 一种推进式螺旋桨无人机滑流效应影响研究[J]. 空气动力学学报, 2015, 33(4): 554-562. doi: 10.7638/kqdlxxb-2014.0013

    CHEN G Q, BAI P, ZHAN H L, et al. Numerical simulation study on propeller slipstream effect on unmanned air vehicle with propeller engine[J]. Acta Aerodynamica Sinica, 2015, 33(4): 554-562(in Chinese). doi: 10.7638/kqdlxxb-2014.0013
    [14]
    王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响[J]. 航空学报, 2016, 37(9): 2669-2678. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201609005.htm

    WANG K L, ZHU X P, ZHOU Z, et al. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2669-2678(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201609005.htm
    [15]
    张小莉, 张一帆. 螺旋桨滑流对增升装置气动特性影响研究[J]. 航空计算技术, 2011, 41(4): 1-3. doi: 10.3969/j.issn.1671-654X.2011.04.001

    ZHANG X L, ZHANG Y F. Research on interaction of propeller and high-lift system[J]. Aeronautical Computing Technique, 2011, 41(4): 1-3(in Chinese). doi: 10.3969/j.issn.1671-654X.2011.04.001
    [16]
    任晓峰, 段卓毅, 魏剑龙. 滑流对飞机纵向静稳定性影响的数值模拟[J]. 空气动力学学报, 2017, 35(3): 383-391. doi: 10.7638/kqdlxxb-2017.0006

    REN X F, DUAN Z Y, WEI J L. Numerical simulation of propeller slipstream effects on pitching static stability[J]. Acta Aerodynamica Sinica, 2017, 35(3): 383-391(in Chinese). doi: 10.7638/kqdlxxb-2017.0006
    [17]
    徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11): 2910-2920. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201411002.htm

    XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 2910-2920(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201411002.htm
    [18]
    付炜嘉, 李杰, 娄琪琳. 基于动态面搭接技术的直升机旋翼流场分析[J]. 应用力学学报, 2014, 31(3): 311-316. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201403002.htm

    FU W J, LI J, LOU Q L. Transient response characteristic of magnetic fluid saturated poroelastic medium[J]. Chinese Journal of Applied Mechanics, 2014, 31(3): 311-316(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201403002.htm
    [19]
    赵帅, 段卓毅, 李杰, 等. 涡桨飞机螺旋桨滑流气动干扰效应及流动机理[J]. 航空学报, 2019, 40(4): 163-174. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201904015.htm

    ZHAO S, DUAN Z Y, LI J, et al. Interference effects and flow mechanism of propeller slipstream for turboprop aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 163-174(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201904015.htm
    [20]
    ROOSENBOOM E W M, STVRMER A, SCHRÖDER A. Advanced experimental and numerical validation and analysis of propeller slipstream flows[J]. Journal of Aircraft, 2010, 47(1): 284-291. doi: 10.2514/1.45961
    [21]
    RAI M M. A relaxation approach to patched-grid calculations with Euler equations: AIAA-85-0295[R]. Reston: AIAA, 1985.
    [22]
    MCKEE J W, NAESETH R L. Experimental investigation of the drag of flat plates and cylinders in the slipstream of a hovering rotor: NACA TN 4239[R]. Washington, D.C. : NACA, 1958.
    [23]
    孙俊磊, 王和平, 周洲, 等. 螺旋桨滑流对菱形翼布局无人机气动的影响[J]. 航空学报, 2018, 39(1): 141-154. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201801012.htm

    SUN J L, WANG H P, ZHOU Z, et al. Effects of propeller slipstream on aerodynamic performance of diamond joined-wing configuration UAV[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 141-154(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201801012.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(26)  / Tables(4)

    Article Metrics

    Article views(615) PDF downloads(214) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return