Volume 47 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
XIE Shucong, DONG Yunfeng. High-precision on-orbit real-time orbital maneuver decision[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1407-1413. doi: 10.13700/j.bh.1001-5965.2020.0195(in Chinese)
Citation: XIE Shucong, DONG Yunfeng. High-precision on-orbit real-time orbital maneuver decision[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1407-1413. doi: 10.13700/j.bh.1001-5965.2020.0195(in Chinese)

High-precision on-orbit real-time orbital maneuver decision

doi: 10.13700/j.bh.1001-5965.2020.0195
More Information
  • Corresponding author: DONG Yunfeng. E-mail: sinosat@buaa.edu.cn
  • Received Date: 20 May 2020
  • Accepted Date: 14 Aug 2020
  • Publish Date: 20 Jul 2021
  • In order to ensure the real-time maneuverability and high-precision requirements of orbital maneuver, a real-time maneuver decision-making method based on machine learning is proposed. The optimal solution under perturbation is obtained offline through the optimization algorithm. The two-body solution is subtracted to obtain the speed increment difference, which is projected onto the orbital system to obtain the speed increment perturbation correction term, which is used as the output of the neural network. The network parameters are designed and trained to obtain perturbation correction network. The combination of perturbation correction network and two-body solution is used to achieve high-precision real-time orbital maneuver decision. The simulation results show that the terminal position deviation after the completion of the maneuver according to the decision is consistent with the accuracy of the terminal position deviation after the completion of the decision maneuver according to the optimization algorithm, and the former decision time is only about 0.01% of the latter decision time. The orbital maneuver decision-making method proposed in this paper takes into account both accuracy and real-time performance, and is suitable for on-board decision-making.

     

  • loading
  • [1]
    夏红伟, 李莉, 曲耀斌, 等. 卫星编队构型设计与轨道机动算法优化[J]. 中国惯性技术学报, 2013, 21(2): 186-191. doi: 10.3969/j.issn.1005-6734.2013.02.012

    XIA H W, LI L, QU Y B, et al. Satellites formation configuration design and orbit maneuver algorithm optimization[J]. Journal of Chinese Inertial Technology, 2013, 21(2): 186-191(in Chinese). doi: 10.3969/j.issn.1005-6734.2013.02.012
    [2]
    于瀚. 航天器轨道机动可达区域研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    YU H. The study of reachable domain for spacecraft maneuver[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [3]
    谭丽芬. 赤道椭圆交会轨道规划与制导方法[D]. 长沙: 国防科技大学, 2011.

    TAN L F. Rendezvous trajectory planning and guidance approach for equatorial elliptical orbit[D]. Changsha: National University of Defense Technology, 2011(in Chinese).
    [4]
    张守玉, 姜振东. 基于STK的卫星轨道机动模型设计与仿真[J]. 计算机仿真, 2004, 21(10): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ200410008.htm

    ZHANG S Y, JIANG Z D. Design and simulation of satellite orbital maneuver model on STK[J]. Computer Integrated Manufacturing Systems, 2004, 21(10): 25-27(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ200410008.htm
    [5]
    BATE R R. 航天动力学基础[M]. 吴鹤鸣, 李肇杰, 译. 北京: 北京航空航天大学出版社, 1990.

    BATE R R. Fundamentals of astrodynamics[M]. WU H M, LI Z J, translated. Beijing: Beihang University Press, 1990(in Chinese).
    [6]
    李栋林, 黄福铭. 基于Lambert问题的精确拦截与交会策略研究[J]. 飞行力学, 2008, 26(2): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX200802016.htm

    LI D L, HUANG F M. Research into accurate interception and rendezvous scheme based on Lambert problem[J]. Flight Dynamics, 2008, 26(2): 57-59(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX200802016.htm
    [7]
    桑艳, 周进. 基于Lambert算法的脉冲精确变轨策略[J]. 国防科技大学学报, 2009, 31(3): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ200903008.htm

    SANG Y, ZHOU J. An approach of accurate impulse transfer based on Lambert algorithm[J]. Journal of National University of Defense Technology, 2009, 31(3): 29-32(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ200903008.htm
    [8]
    JEZEWSKI D J. Optimal rendezvous trajectories subject to arbitrary perturbations and constraints[C]//AIAA/AAS Astrodynamics Specialist Confernce. Reston: AIAA Press, 1992: 4507.
    [9]
    CHANG Y, ZHOU J. Orbital correction method for two-impulse rendezvous between non-coplanner elliptic orbits considering the J2 perturbation[J]. Journal of Astronautics, 2008, 29(4): 1172-1176. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-astronautics_thesis/0201220260288.html
    [10]
    周须峰, 唐硕. 固定时间拦截变轨段制导的摄动修正方法[J]. 飞行力学, 2006, 24(4): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX200604011.htm

    ZHOU X F, TANG S. Disturbed modify method of fixed-time interception's guidance in orbit-change stage[J]. Flight Dynamics, 2006, 24(4): 46-49(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX200604011.htm
    [11]
    裴忠才, 尹丽, 王占林. 基于神经网络的仿真转台控制系统[J]. 北京航空航天大学学报, 2005, 31(9): 1045-1048. doi: 10.3969/j.issn.1001-5965.2005.09.024

    PEI Z C, YIN L, WANG Z L. Simulating turntable control system with neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(9): 1045-1048(in Chinese). doi: 10.3969/j.issn.1001-5965.2005.09.024
    [12]
    CHENG L, WANG Z, JIANG F, et al. Real-time optimal control for spacecraft orbit transfer via multiscale deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(5): 2436-2450. http://ieeexplore.ieee.org/document/8587201/
    [13]
    ZHONG R, XU S. Neural-network-based terminal sliding-mode control for thrust regulation of a tethered space-tug[J]. Astrodynamics, 2018, 2(10): 175-185. doi: 10.1007/s42064-017-0019-0
    [14]
    SÁNCHEZ-SÁNCHEZ C, IZZO D. Real-time optimal control via deep neural networks: Study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1122-1135. doi: 10.2514/1.G002357
    [15]
    IZZO D, SPRAGUE C I, TAILOR D V. Machine learning and evolutionary techniques in interplanetary trajectory design[M]//FASANO G, PINIER J. Modeling and optimization in space engineering. Berlin: Springer, 2019: 191-210.
    [16]
    FURFARO R, BLOISE I, ORLANDELLI M, et al. Deep learning for autonomous lunar landing[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston: AIAA, 2018: 18-363.
    [17]
    董云峰, 陈士明, 苏建敏, 等. 卫星姿态控制动态模拟技术[M]. 北京: 科学出版社, 2010: 300-301.

    DONG Y F, CHEN S M, SU J M, et al. Dynamic simulation technology of satellite attitude control[M]. Beijing: Science Press, 2010: 300-301(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(6)

    Article Metrics

    Article views(456) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return