Volume 47 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
XIAO Yongqiang, WANG Hongli, FENG Lei, et al. Two-step Kalman filter algorithm for pulsar position error estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1446-1452. doi: 10.13700/j.bh.1001-5965.2020.0201(in Chinese)
Citation: XIAO Yongqiang, WANG Hongli, FENG Lei, et al. Two-step Kalman filter algorithm for pulsar position error estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1446-1452. doi: 10.13700/j.bh.1001-5965.2020.0201(in Chinese)

Two-step Kalman filter algorithm for pulsar position error estimation

doi: 10.13700/j.bh.1001-5965.2020.0201
Funds:

National Natural Science Foundation of China 61503391

China Postdoctoral Science Foundation 2017M613327

More Information
  • Corresponding author: WANG Hongli, E-mail: wanghongli19650526@163.com
  • Received Date: 22 May 2020
  • Accepted Date: 14 Aug 2020
  • Publish Date: 20 Jul 2021
  • A Two-Step Kalman Filter (TSKF) algorithm is designed to overcome the influence of clock error and satellite position error on pulsar position error estimation. First, the traditional model of pulsar position error estimation is introduced, and it is confirmed by analysis that the clock error, satellite position error, and both errors will have serious impact on the estimation. Second, the clock error and satellite position error are added to the traditional estimation model, and the clock error and its rate of change are expanded to a new state quantity, thereby deducing a new model of pulsar position error estimation containing these two errors. And its observability is proved through theoretical analysis. Then the update equation of the TSKF algorithm is written combined with the new model and based on the two-step Kalman filter principle. Finally, simulations show that the TSKF algorithm can effectively isolate the influences of the two errors and make the estimation accuracy kept within 0.2 mas while the traditional pulsar position error estimation algorithm has a large deviation and divergence of the right ascension and declination errors under the influence of the two errors.

     

  • loading
  • [1]
    SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation[D]. Maryland: University of Maryland, 2005.
    [2]
    刘劲. 基于X射线脉冲星的航天器自主导航方法研究[D]. 武汉: 华中科技大学, 2011.

    LIU J. X-ray pulsar-based spacecraft autonomous navigation[D]. Wuhan: Huazhong University of Science and Technology, 2011(in Chinese).
    [3]
    孙守明. 基于X射线脉冲星的航天器自主导航方法研究[D]. 长沙: 国防科学技术大学, 2011.

    SUN S M. Study on autonomous navigation method of spacecraft based on X-ray pulsars[D]. Changsha: National University of Defense Technology, 2011(in Chinese).
    [4]
    孙守明, 郑伟, 汤国建. X射线脉冲星星表方位误差估计算法研究[J]. 飞行器测控学报, 2010, 29(2): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-FXCK201002017.htm

    SUN S M, ZHENG W, TANG G J. A new estimation algorithm of the X-ray pulsar position error[J]. Journal of Spacecraft TT & C Technology, 2010, 29(2): 57-60(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FXCK201002017.htm
    [5]
    熊凯, 魏春岭, 刘良栋. 鲁棒滤波技术在脉冲星导航中的应用[J]. 空间控制技术与应用, 2008, 34(6): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ200806004.htm

    XIONG K, WEI C L, LIU L D. Application of robust filtering in pulsars-based navigation[J]. Aerospace Control and Application, 2008, 34(6): 8-11(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ200806004.htm
    [6]
    XU Q, WANG H L, FENG L, et al. An improved augmented X-ray pulsar navigation algorithm based on the norm of pulsar direction error[J]. Advances in Space Research, 2018, 62(11): 3187-3198. doi: 10.1016/j.asr.2018.08.026
    [7]
    NING X L, GUI M Z, FANG J C, et al. Differential X-ray pulsar aided celestial navigation for Mars exploration[J]. Aerospace Science and Technology, 2017, 62: 36-45. doi: 10.1016/j.ast.2016.10.032
    [8]
    王宏力, 许强, 由四海, 等. 考虑卫星位置误差的增广脉冲星方位误差估计算法[J]. 国防科技大学学报, 2018, 40(5): 177-182. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201805026.htm

    WANG H L, XU Q, YOU S H, et al. Augmented estimation algorithm for pulsar position error with satellite position error[J]. Journal of National University of Defense Technology, 2018, 40(5): 177-182(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201805026.htm
    [9]
    孙守明, 郑伟, 汤国建. X射线脉冲星/SINS组合导航中的钟差修正方法研究[J]. 国防科技大学学报, 2010, 32(6): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201006016.htm

    SUN S M, ZHENG W, TANG G J. A new clock error control algorithm of X-ray pulsars/SINS integrated navigation[J]. Journal of National University of Defense Technology, 2010, 32(6): 82-86(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201006016.htm
    [10]
    王璐, 史晨曦, 李建勋, 等. 考虑钟差修正的脉冲星与多普勒差分组合导航[J]. 电波科学学报, 2018, 33(2): 217-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201802016.htm

    WANG L, SHI C X, LI J X, et al. Pulsar and Doppler difference integrated navigation considering clock error control[J]. Chinese Journal of Radio Science, 2018, 33(2): 217-224(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201802016.htm
    [11]
    EMADZADEH A A, SPEYER J L. X-ray pulsar-based relative navigation using epoch folding[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2317-2328. http://ieeexplore.ieee.org/document/6034635
    [12]
    李孝辉, 吴海涛, 高海军, 等. 用Kalman滤波器对原子钟进行控制[J]. 控制理论与应用, 2003, 20(4): 551-554. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200304013.htm

    LI X H, WU H T, GAO H J, et al. Clock disciplined method by using Kalman filter[J]. Control Theory & Applications, 2003, 20(4): 551-554(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY200304013.htm
    [13]
    帅平, 陈绍龙, 吴一帆, 等. X射线脉冲星导航技术研究进展[J]. 空间科学学报, 2007, 27(2): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB200702013.htm

    SHUAI P, CHEN S L, WU Y F, et al. Advance in X-ray pulsar navigation technology[J]. Chinese Journal of Space Science, 2007, 27(2): 169-176(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB200702013.htm
    [14]
    FRIEDLAND B. Treatment of bias in recursive filtering[J]. IEEE Transactions on Automatic Control, 1969, 14(4): 359-367. http://ieeexplore.ieee.org/document/1099223/references
    [15]
    HAESSIG D, FRIEDLAND B. Separate-bias estimation with reduced-order Kalman filters[J]. IEEE Transactions on Automatic Control, 1998, 43(7): 983-987. http://ieeexplore.ieee.org/iel4/9/15074/00701106.pdf
    [16]
    IGNAGNI M B. Separate bias Kalman estimator with bias state noise[J]. IEEE Transactions on Automatic Control, 1990, 35(3): 338-341. http://ieeexplore.ieee.org/document/50352
    [17]
    王奕迪, 郑伟, 孙守明, 等. 考虑系统偏差的脉冲星守时算法研究[J]. 国防科技大学学报, 2013, 35(2): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201302004.htm

    WANG Y D, ZHENG W, SUN S M, et al. Algorithm for the pulsar timing system with the system bias[J]. Journal of National University of Defense Technology, 2013, 35(2): 12-16(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201302004.htm
    [18]
    许强, 范小虎, 徐利国, 等. 脉冲星方位误差估计的TSKF算法[J]. 北京航空航天大学学报, 2020, 46(4): 761-768. doi: 10.13700/j.bh.1001-5965.2019.0288

    XU Q, FAN X H, XU L G, et al. TSKF algorithm for pulsar position error estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 761-768(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0288
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views(511) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return