Volume 47 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
HAN Yongsai, MA Shiping, HE Linyuan, et al. Regional object detection of remote sensing airport based on improved deep neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1470-1480. doi: 10.13700/j.bh.1001-5965.2020.0225(in Chinese)
Citation: HAN Yongsai, MA Shiping, HE Linyuan, et al. Regional object detection of remote sensing airport based on improved deep neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1470-1480. doi: 10.13700/j.bh.1001-5965.2020.0225(in Chinese)

Regional object detection of remote sensing airport based on improved deep neural network

doi: 10.13700/j.bh.1001-5965.2020.0225
Funds:

National Natural Science Foundation of China 61701524

National Natural Science Foundation of China 61773397

Aeronautical Science Foundation of China 20175896022

More Information
  • Corresponding author: MA Shiping, E-mail: 1013765061@qq.com
  • Received Date: 28 May 2020
  • Accepted Date: 21 Aug 2020
  • Publish Date: 20 Jul 2021
  • The detection of multiple types of targets in the airport area under the satellite remote sensing monitor is of great military and civilian significance in real life. In order to effectively improve the detection accuracy of remote sensing images in the airport area, based on the representative deep network Faster R-CNN in the mainstream target detection method, the ReMD data enhancement algorithm is proposed for the data side. The deep ResNet network and the feature fusion component-FPN are used to extract more robust deep distinguishing features of airport area target. Finally, a new fully connected layer is added to the end detection network, and the softmax classifier and 4 logistic regression classifiers are combined to accurately classify airport area multi-class targets according to the target class correlation. Experiments show that the improvement of the original network brings a 11.6% increase in the average detection accuracy rate of the original network, reaching 80.5% mAP. Compared with other mainstream networks, it also has a better accuracy rate. At the same time, by appropriately reducing the input amount of the recommended area, under the premise of 3.2% reduction of accuracy rate, the detection time of 0.512 s is improved by 3 times to 0.173 s. According to the specific task, the accuracy and detection speed can be reasonably weighed, which reflects the effectiveness and practicability of the network.

     

  • loading
  • [1]
    RICHARDS J R. Remote sensing digital image analisis[M]. Berlin: Springer, 1999: 20-21.
    [2]
    杨四海, 陈锻生, 谢维波. Hough变换的特性分析: 一种全局观点[J]. 计算机辅助设计与图形学学报, 2006, 18(8): 1197-1204. doi: 10.3321/j.issn:1003-9775.2006.08.020

    YANG S H, CHEN D S, XIE W B. Characteristics of hough transform: A global view[J]. Journal of Computer-Aided Design & Computer Graphics, 2006, 18(8): 1197-1204(in Chinese). doi: 10.3321/j.issn:1003-9775.2006.08.020
    [3]
    梁浩然. 自然图像的视觉显著性特征分析与检测方法及其应用研究[D]. 杭州: 浙江工业大学, 2016: 16-17.

    LIANG H R. Research on saliency detection of natural image and its application[D]. Hangzhou: Zhejiang University of Technology, 2016: 16-17(in Chinese).
    [4]
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. doi: 10.1109/TPAMI.2017.2699184
    [5]
    LI W, XIANG S M, WANG H B, et al. Robust airplane detection in satellite images[C]//2011 18th IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2011: 2821-2824.
    [6]
    林煜东, 和红杰, 尹忠科, 等. 基于稀疏表示的可见光遥感图像飞机检测算法[J]. 光子学报, 2014, 43(9): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201409039.htm

    LIN Y D, HE H J, YIN Z K, et al. Airplane detection in optical remote sensing image based on sparse-representation[J]. Acta Photonica Sinica, 2014, 43(9): 196-201(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201409039.htm
    [7]
    仇建斌, 李士进, 王玮. 角点与边缘信息相结合的遥感图像飞机检测新方法[J]. 微电子学与计算机, 2011, 28(9): 214-216. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201109057.htm

    QIU J B, LI S J, WANG W. A new approach to detect aircrafts in remote sensing images based on corner and edge information fusion[J]. Microelectronics & Computer, 2011, 28(9): 214-216(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201109057.htm
    [8]
    AN Z Y, SHI Z W, TENG X C, et al. An automated airplane detection system for large panchromatic image with high spatial resolution[J]. Optik, 2014, 125(12): 2768-2775. doi: 10.1016/j.ijleo.2013.12.003
    [9]
    ZHANG P, NIU X, DOU Y, et al. Airport detection on optical satellite images using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1183-1187. doi: 10.1109/LGRS.2017.2673118
    [10]
    ZHU T H, LI Y H, YE Q K, et al. Integrating saliency and ResNet for airport detection in large-size remote sensing images[C]//20172nd International Conference on Image, Vision and Computing (ICIVC). Piscataway: IEEE Press, 2017: 20-25.
    [11]
    CHEN X Y, XIANG S M, LIU C L, et al. Aircraft detection by deep belief nets[C]//20132nd IAPR Asian Conference on Pattern Recognition. Piscataway: IEEE Press, 2013: 54-58.
    [12]
    WU H, ZHANG H, ZHANG J F, et al. Fast aircraft detection in satellite images based on convolutional neural networks[C]//2015 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2015: 4210-4214.
    [13]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [14]
    戴陈卡, 李毅. 基于Faster RCNN以及多部件结合的机场场面静态飞机检测[J]. 计算机应用, 2017, 37(S2): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2017S2021.htm

    DAI C K, LI Y. Aeroplane detection in static aerodrome based on Faster RCNN and multi-part model[J]. Journal of Computer Applications, 2017, 37(S2): 85-88(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2017S2021.htm
    [15]
    朱明明, 许悦雷, 马时平, 等. 基于特征融合与软判决的遥感图像飞机检测[J]. 光学学报, 2019, 39(2): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201902009.htm

    ZHU M M, XU Y L, MA S P, et al. Airplane detection based on feature fusion and soft decision in remote sensing images[J]. Acta Optica Sinica, 2019, 39(2): 71-77(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201902009.htm
    [16]
    CHEN F, REN R L, VAN DE VOORDE T, et al. Fast automatic airport detection in remote sensing images using convolutional neural networks[J]. Remote Sensing, 2018, 10(3): 443. doi: 10.3390/rs10030443
    [17]
    RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y
    [18]
    ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[M]//Computer Vision-ECCV 2014. Berlin: Springer, 2014: 818-833.
    [19]
    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 121-124.
    [20]
    SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 1-9.
    [21]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
    [22]
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 936-944.
    [23]
    EVERINGHAM M, GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. doi: 10.1007/s11263-009-0275-4
    [24]
    REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08)[2019-07-18]. https://arxiv.org/abs/1804.02767.
    [25]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
    [26]
    HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [27]
    KONG T, YAO A B, CHEN Y R, et al. HyperNet: Towards accurate region proposal generation and joint object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 845-853.
    [28]
    DAI J F, LI Y, HE K M, et al. R-FCN: Object detection via region-based fully convolutional networks[C]//Neural Information Processing Systems. Piscataway: IEEE Press, 2016: 379-387.
    [29]
    LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Berlin: Springer, 2016: 21-37. doi: 10.1007/978-3-319-46448-0_2
    [30]
    SHRIVASTAVA A, SUKTHANKAR R, MALIK J, et al. Beyond skip connections: Top-down modulation for object detection[C]//Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 256-266.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Article Metrics

    Article views(507) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return