Volume 47 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
CHENG Xiaoquan, DU Xiaoyuan. Research development of fatigue life prediction and damage analysis model of fiber-reinforced composite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1311-1322. doi: 10.13700/j.bh.1001-5965.2020.0229(in Chinese)
Citation: CHENG Xiaoquan, DU Xiaoyuan. Research development of fatigue life prediction and damage analysis model of fiber-reinforced composite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1311-1322. doi: 10.13700/j.bh.1001-5965.2020.0229(in Chinese)

Research development of fatigue life prediction and damage analysis model of fiber-reinforced composite

doi: 10.13700/j.bh.1001-5965.2020.0229
More Information
  • Corresponding author: CHENG Xiaoquan. E-mail: xiaoquan_cheng@buaa.edu.cn
  • Received Date: 01 Jun 2020
  • Accepted Date: 30 Aug 2020
  • Publish Date: 20 Jul 2021
  • With the wide application of fiber-reinforced composite primary structures in many fields, fatigue has become a critical problem in composite structural design and analysis. Based on the development of fatigue theory of composite materials, many theoretical methods and numerical models for life prediction and damage analysis have been proposed by scholars. The current composite fatigue performance analysis models can be classified as fatigue life model, phenomenological model and progressive damage model. The development of these three kinds of models is reviewed and compared and their advantages and disadvantages are analyzed. The theory of fatigue life model is relatively simple, and the model is suitable for the life estimation of engineering structures. The mathematical relationship between residual strength/stiffness and fatigue cycle number is established in phenomenological model, which can predict the structure fatigue life and material residual mechanical properties. The progressive damage model can not only predict the structure fatigue life and material residual mechanical properties, but also analyze the fatigue damage mechanism of structures. Finally, the development trends of these fatigue performance analysis models are discussed. It is pointed out that reducing the implementation cost and improving the generality are important problems of these models.

     

  • loading
  • [1]
    ROUCHON J, BOS M. Fatigue and damage tolerance evaluation of structures: The composite materials response: NLR-TP-2009-221[R]. Amsterdam: NLR, 2009.
    [2]
    BATHIAS C. An engineering point of view about fatigue of polymer matrix composite materials[J]. International Journal of Fatigue, 2006, 28(10): 1094-1099. doi: 10.1016/j.ijfatigue.2006.02.008
    [3]
    ANSARI M T A, SINGH K K, AZAM M S. Fatigue damage analysis of fiber-reinforced polymer composites-A review[J]. Journal of Reinforced Plastics and Composites, 2018, 37(9): 636-654. doi: 10.1177/0731684418754713
    [4]
    BROD M, JUST G, DEAN A, et al. Numerical modelling and simulation of fatigue damage in carbon fibre reinforced plastics at different stress ratios[J]. Thin Walled Structures, 2019, 139: 219-231. doi: 10.1016/j.tws.2019.03.005
    [5]
    VASSILOPOULOS A P. Fatigue life modeling and prediction methods for composite materials and structures-Past, present, and future prospects[M]//VASSILOPOULOS A P. Fatigue life prediction of composites and composite structures. Amsterdam: Elsevier, 2020: 1-43.
    [6]
    VASSILOPOULOS A P. The history of fiber-reinforced polymer composite laminate fatigue[J]. International Journal of Fatigue, 2020, 134: 105512. doi: 10.1016/j.ijfatigue.2020.105512
    [7]
    BAK B L, SARRADO C, TURON A, et al. Delamination under fatigue loads in composite laminates: A review on the observed phenomenology and computational methods[J]. Applied Mechanics Reviews, 2014, 66(6): 060803. doi: 10.1115/1.4027647
    [8]
    PASCOE J A, ALDERLIESTEN R C, BENEDICTUS R. Methods for the prediction of fatigue delamination growth in composites and adhesive bonds-A critical review[J]. Engineering Fracture Mechanics, 2013, 112-113: 72-96. doi: 10.1016/j.engfracmech.2013.10.003
    [9]
    翟洪军, 姚卫星. 纤维增强树脂基复合材料的疲劳剩余刚度研究进展[J]. 力学进展, 2002, 32(1): 69-80. doi: 10.3321/j.issn:1000-0992.2002.01.006

    ZHAI H J, YAO W X. A survey on stiffness reduction models of fiber reinforced plastics under cyclic loading[J]. Advances in Mechanics, 2002, 32(1): 69-80(in Chinese). doi: 10.3321/j.issn:1000-0992.2002.01.006
    [10]
    HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973, 7(4): 448-464. doi: 10.1177/002199837300700404
    [11]
    REIFSNIDER K, GAO Z. A micromechanics model for composites under fatigue loading[J]. International Journal of Fatigue, 1991, 13(2): 149-156. doi: 10.1016/0142-1123(91)90007-L
    [12]
    PHILIPPIDIS T P, VASSILOPOULOS A P. Fatigue strength prediction under multiaxial stress[J]. Journal of Composite Materials, 1999, 33(17): 1578-1599. doi: 10.1177/002199839903301701
    [13]
    FAWAZ Z, ELLYIN F. Fatigue failure model for fibre-reinforced materials under general loading conditions[J]. Journal of Composite Materials, 1994, 28(15): 1432-1451. doi: 10.1177/002199839402801503
    [14]
    BRØNDSTED P, ANDERSEN S, LILHOLT H. Fatigue damage accumulation and lifetime prediction of GFRP materials under block loading and stochastic loading[C]//Proceedings of the 18th Risø International Symposium on Materials Science, 1997: 269-278.
    [15]
    VASSILOPOULOS A P, MANSHADI B D, KELLER T. Influence of the constant life diagram formulation on the fatigue life prediction of composite materials[J]. International Journal of Fatigue, 2010, 32(4): 659-669. doi: 10.1016/j.ijfatigue.2009.09.008
    [16]
    PHILIPPIDIS T P, VASSILOPOULOS A P. Life prediction methodology for GFRP laminates under spectrum loading[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(6): 657-666. doi: 10.1016/j.compositesa.2004.02.009
    [17]
    HARRIS B. A parametric constant-life model for prediction of the fatigue lives of fibre-reinforced plastics[M]//HARRIS B. Fatigue in composites. Amsterdam: Elsevier, 2003: 546-568.
    [18]
    KAWAI M, KOIZUMI M. Nonlinear constant fatigue life diagrams for carbon/epoxy laminates at room temperature[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(11): 2342-2353. doi: 10.1016/j.compositesa.2007.01.016
    [19]
    BOERSTRA G. The multislope model: A new description for the fatigue strength of glass fibre reinforced plastic[J]. International Journal of Fatigue, 2007, 29(8): 1571-1576. doi: 10.1016/j.ijfatigue.2006.11.007
    [20]
    KASSAPOGLOU C. Fatigue life prediction of composite structures under constant amplitude loading[J]. Journal of Composite Materials, 2007, 41(22): 2737-2754. doi: 10.1177/0021998307078735
    [21]
    PARK T, KIM M, JANG B, et al. A nonlinear constant life model for the fatigue life prediction of composite structures[J]. Advanced Composite Materials, 2014, 23(4): 337-350. doi: 10.1080/09243046.2013.871172
    [22]
    VASSILOPOULOS A P, GEORGOPOULOS E F, KELLER T. Comparison of genetic programming with conventional methods for fatigue life modeling of FRP composite materials[J]. International Journal of Fatigue, 2008, 30(9): 1634-1645. doi: 10.1016/j.ijfatigue.2007.11.007
    [23]
    VASSILOPOULOS A P, KELLER T. Modeling of the fatigue life of adhesively-bonded FRP joints with genetic programming[C]//Proceedings of the 17th International Conference on Composite Materials, 2009: 27-31.
    [24]
    ZHOU C, ZHOU S, PENG Y, et al. Study on the fatigue modeling of FRP composite materials[C]//Proceedings of the 5th International Conference on Energy and Environmental Protection, 2016: 763-767.
    [25]
    VASSILOPOULOS A P, GEORGOPOULOS E F, DIONYSOPOULOS V. Artificial neural networks in spectrum fatigue life prediction of composite materials[J]. International Journal of Fatigue, 2007, 29(1): 20-29. doi: 10.1016/j.ijfatigue.2006.03.004
    [26]
    AL-ASSADI M, EL KADI H A, DEIAB I M. Using artificial neural networks to predict the fatigue life of different composite materials including the stress ratio effect[J]. Applied Composite Materials, 2011, 18(4): 297-309. doi: 10.1007/s10443-010-9158-7
    [27]
    AL-ASSADI M, EL KADI H A, DEIAB I M. Predicting the fatigue life of different composite materials using artificial neural networks[J]. Applied Composite Materials, 2010, 17(1): 1-14. doi: 10.1007/s10443-009-9090-x
    [28]
    VASSILOPOULOS A P, BEDI R. Adaptive neuro-fuzzy inference system in modelling fatigue life of multidirectional composite laminates[J]. Computational Materials Science, 2008, 43(4): 1086-1093. doi: 10.1016/j.commatsci.2008.02.028
    [29]
    JARRAH M, AL-ASSAF Y, KADI H E. Neuro-fuzzy modeling of fatigue life prediction of unidirectional glass fiber/epoxy composite laminates[J]. Journal of Composite Materials, 2002, 36(6): 685-700. doi: 10.1177/0021998302036006176
    [30]
    VASSILOPOULOS A P. Residual strength fatigue theories for composite materials[M]//VASSILOPOULOS A P. Fatigue life prediction of composites and composite structures. Amsterdam: Elsevier, 2020: 79-101.
    [31]
    D'AMORE A, GIORGIO M, GRASSIA L. Modeling the residual strength of carbon fiber reinforced composites subjected to cyclic loading[J]. International Journal of Fatigue, 2015, 78: 31-37. doi: 10.1016/j.ijfatigue.2015.03.012
    [32]
    BROUTMAN L, SAHU S. A new theory to predict cumulative fatigue damage in fiberglass reinforced plastics[C]//Composite materials: Testing and Design(Second Conference), 1972: 170-188.
    [33]
    HALPIN J C, JERINA K L, JOHNSON T A. Characterization of composites for the purpose of reliability evaluation: STP36479S[R]. West Conshohocken: ASTM International, 1973.
    [34]
    YANG J N, LIU M. Residual strength degradation model and theory of periodic proof tests for graphite/epoxy laminates[J]. Journal of Composite Materials, 1977, 11(2): 176-203. doi: 10.1177/002199837701100205
    [35]
    YANG J, JONES D. Fatigue of graphite/epoxy[0/90/45/-45]S laminates under dual stress levels[J]. Journal of Composites, Technology and Research, 1982, 4(3): 63-70. doi: 10.1520/CTR10864J
    [36]
    DICK T, JAR P Y, CHENG J J. Prediction of fatigue resistance of short-fibre-reinforced polymers[J]. International Journal of Fatigue, 2009, 31(2): 284-291. doi: 10.1016/j.ijfatigue.2008.08.011
    [37]
    D'AMORE A, CAPRINO G, STUPAK P, et al. Effect of stress ratio on the flexural fatigue behaviour of continuous strand mat reinforced plastics[J]. Science and Engineering of Composite Materials, 1996, 5(1): 1-8. doi: 10.1515/SECM.1996.5.1.1
    [38]
    DIAO X, YE L, MAI Y W. A statistical model of residual strength and fatigue life of composite laminates[J]. Composites Science and Technology, 1995, 54(3): 329-336. doi: 10.1016/0266-3538(95)00060-7
    [39]
    YAO W, HIMMEL N. A new cumulative fatigue damage model for fibre-reinforced plastics[J]. Composites Science and Technology, 2000, 60(1): 59-64. doi: 10.1016/S0266-3538(99)00100-1
    [40]
    HOSOI A, KAWADA H, YOSHINO H. Fatigue characteristics of quasi-isotropic CFRP laminates subjected to variable amplitude cyclic two-stage loading[J]. International Journal of Fatigue, 2006, 28(10): 1284-1289. doi: 10.1016/j.ijfatigue.2006.02.039
    [41]
    D'AMORE A, GRASSIA L. Constitutive law describing the strength degradation kinetics of fibre-reinforced composites subjected to constant amplitude cyclic loading[J]. Mechanics of Time-Dependent Materials, 2016, 20(1): 1-12. doi: 10.1007/s11043-015-9281-9
    [42]
    JOHN T, WARUNA S. Determining the fatigue life of composites aircraft structures using life and load-enhancement factors: DOT/FAA/AR-10/6[R]. Washington, D.C. : FAA, 2011.
    [43]
    SENDECKYJ G P. Life prediction for resin-matrix composite materials[M]. Amsterdam: Elsevier, 1991: 431-483.
    [44]
    KASSAPOGLOU C. Fatigue model for composites based on the cycle-by-cycle probability of failure: Implications and applications[J]. Journal of Composite Materials, 2011, 45(3): 261-277. doi: 10.1177/0021998308104357
    [45]
    SENDECKYJ G P. Fitting models to composite materials fatigue data: STP29314S[R]. West Conshohocken: ASTM International, 1981.
    [46]
    HWANG W, HAN K S. Fatigue of composites-fatigue modulus concept and life prediction[J]. Journal of Composite Materials, 1986, 20(2): 154-165. doi: 10.1177/002199838602000203
    [47]
    ECHTERMEYER A T, ENGH B, BUENE L. Lifetime and Young's modulus changes of glass/phenolic and glass/polyester composites under fatigue[J]. Composites, 1995, 26(1): 10-16. doi: 10.1016/0010-4361(94)P3624-A
    [48]
    SIDOROFF F, SUBAGIO B. Fatigue damage modelling of composite materials from bending tests[C]//6th International Conference on Composite Materials (ICCM-VI) & Second European Conference on Composite Materials (ECCM-Ⅱ), 1987, 4: 32-39.
    [49]
    VAN PAEPEGEM W, DEGRIECK J. Simulating damage and permanent strain in composites under in-plane fatigue loading[J]. Computers & Structures, 2005, 83(23-24): 1930-1942. http://www.sciencedirect.com/science/article/pii/S0045794905001331
    [50]
    VIEILLEVIGNE S, JEULIN D, RENARD J, et al. Modelling of the fatigue behaviour of a unidirectional glass epoxy composite submitted to fatigue loadings[C]//Proceedings of the International Conference on Fatigue of Composites, 1997: 424-430.
    [51]
    KAWAI M, YAJIMA S, HACHINOHE A, et al. High-temperature off-axis fatigue behaviour of unidirectional carbon-fibre-reinforced composites with different resin matrices[J]. Composites Science and Technology, 2001, 61(9): 1285-1302. doi: 10.1016/S0266-3538(01)00027-6
    [52]
    KAWAI M, YAJIMA S, HACHINOHE A, et al. Off-axis fatigue behavior of unidirectional carbon fiber-reinforced composites at room and high temperatures[J]. Journal of Composite Materials, 2001, 35(7): 545-576. doi: 10.1177/002199801772662073
    [53]
    KAWAI M, TANIGUCHI T. Off-axis fatigue behavior of plain weave carbon/epoxy fabric laminates at room and high temperatures and its mechanical modeling[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(2): 243-256. doi: 10.1016/j.compositesa.2005.07.003
    [54]
    YANG J, JONES D, YANG S, et al. A stiffness degradation model for graphite/epoxy laminates[J]. Journal of Composite Materials, 1990, 24(7): 753-769. doi: 10.1177/002199839002400705
    [55]
    WU W F, LEE L, CHOI S T. A study of fatigue damage and fatigue life of composite laminates[J]. Journal of Composite Materials, 1996, 30(1): 123-137. doi: 10.1177/002199839603000108
    [56]
    程小全, 邹健, 杨琨, 等. 缝合复合材料层合板疲劳寿命预测[J]. 失效分析与预防, 2008, 3(4): 8-11. doi: 10.3969/j.issn.1673-6214.2008.04.002

    CHENG X Q, ZOU J, YANG K, et al. Fatigue life prediction model for stitched composite laminates[J]. Failire Analysis and Prevention, 2008, 3(4): 8-11(in Chinese). doi: 10.3969/j.issn.1673-6214.2008.04.002
    [57]
    王丹勇, 温卫东. 复合材料单钉接头疲劳累积损伤破坏分析[J]. 复合材料学报, 2008, 25(1): 173-179. doi: 10.3321/j.issn:1000-3851.2008.01.029

    WANG D Y, WEN W D. Fatigue progressive damage analysis of single fastener joints in composite laminates[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 173-179(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.029
    [58]
    DORMOHAMMDI S, GODINES C, ABDI F, et al. Damage-tolerant composite design principles for aircraft components under fatigue service loading using multi-scale progressive failure analysis[J]. Journal of Composite Materials, 2017, 51(15): 2181-2202. doi: 10.1177/0021998317691812
    [59]
    WHITWORTH H. A stiffness degradation model for composite laminates under fatigue loading[J]. Composite Structures, 1997, 40(2): 95-101. doi: 10.1016/S0263-8223(97)00142-6
    [60]
    VAN PAEPEGEM W, DEGRIECK J. A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites[J]. International Journal of Fatigue, 2002, 24(7): 747-762. doi: 10.1016/S0142-1123(01)00194-3
    [61]
    WU F, YAO W. A fatigue damage model of composite materials[J]. International Journal of Fatigue, 2010, 32(1): 134-138. doi: 10.1016/j.ijfatigue.2009.02.027
    [62]
    SHIRI S, YAZDANI M, POURGOL-MOHAMMAD M. A fatigue damage accumulation model based on stiffness degradation of composite materials[J]. Materials & Design, 2015, 88: 1290-1295. http://www.sciencedirect.com/science/article/pii/S0264127515305244
    [63]
    PIDAPARTI R M, VOGT A. Experimental investigation of Poisson's ratio as a damage parameter for bone fatigue[J]. Journal of Biomedical Materials Research, 2002, 59(2): 282-287. doi: 10.1002/jbm.1243
    [64]
    LECOMPTE D, SMITS A, SOL H, et al. Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens[J]. International Journal of Solids and Structures, 2007, 44(5): 1643-1656. doi: 10.1016/j.ijsolstr.2006.06.050
    [65]
    VAN PAEPEGEM W, DE BAERE I, DEGRIECK J. Modelling the nonlinear shear stress-strain response of glass fibre-reinforced composites. Part Ⅰ: Experimental results[J]. Composites Science and Technology, 2006, 66(10): 1455-1464. doi: 10.1016/j.compscitech.2005.04.014
    [66]
    BERGMANN H, PRINZ R. Fatigue life estimation of graphite/epoxy laminates under consideration of delamination growth[J]. International Journal for Numerical Methods in Engineering, 1989, 27(2): 323-341. doi: 10.1002/nme.1620270208
    [67]
    DAHLEN C, SPRINGER G S. Delamination growth in composites under cyclic loads[J]. Journal of Composite Materials, 1994, 28(8): 732-781. doi: 10.1177/002199839402800803
    [68]
    FENG X, GILCHRIST M, KINLOCH A, et al. Development of a method for predicting the fatigue life of CFRP components[C]//Proceedings of the International Conference on Fatigue of Composites, 1997: 407-414.
    [69]
    SHOKRIEH M M, LESSARD L B. Progressive fatigue damage modeling of composite materials, Part Ⅰ: Modeling[J]. Journal of Composite Materials, 2000, 34(13): 1056-1080. doi: 10.1177/002199830003401301
    [70]
    SHOKRIEH M M, LESSARD L B. Progressive fatigue damage modeling of composite materials, Part Ⅱ: Material characterization and model verification[J]. Journal of Composite Materials, 2000, 34(13): 1081-1116. doi: 10.1177/002199830003401302
    [71]
    PAPANIKOS P, TSERPES K, PANTELAKIS S. Modelling of fatigue damage progression and life of CFRP laminates[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(1): 37-47. http://www.ingentaconnect.com/content/bsc/ffems/2003/00000026/00000001/art00585
    [72]
    YE L. Role of matrix resin in delamination onset and growth in composite laminates[J]. Composites Science and Technology, 1988, 33(4): 257-277. doi: 10.1016/0266-3538(88)90043-7
    [73]
    PASSIPOULARIDIS V, PHILIPPIDIS T, BRONDSTED P. Fatigue life prediction in composites using progressive damage modelling under block and spectrum loading[J]. International Journal of Fatigue, 2011, 33(2): 132-144. doi: 10.1016/j.ijfatigue.2010.07.011
    [74]
    PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 2002, 62(12-13): 1633-1662. doi: 10.1016/S0266-3538(01)00208-1
    [75]
    ELIOPOULOS E N, PHILIPPIDIS T P. A progressive damage simulation algorithm for GFRP composites under cyclic loading. Part Ⅰ: Material constitutive model[J]. Composites Science and Technology, 2011, 71(5): 742-749. doi: 10.1016/j.compscitech.2011.01.023
    [76]
    ELIOPOULOS E N, PHILIPPIDIS T P. A progressive damage simulation algorithm for GFRP composites under cyclic loading. Part Ⅱ: FE implementation and model validation[J]. Composites Science and Technology, 2011, 71(5): 750-757. doi: 10.1016/j.compscitech.2011.01.025
    [77]
    ZHAO L, SHAN M, HONG H, et al. A residual strain model for progressive fatigue damage analysis of composite structures[J]. Composite Structures, 2017, 169: 69-78. doi: 10.1016/j.compstruct.2016.10.119
    [78]
    SHAN M, ZHAO L, HONG H, et al. A progressive fatigue damage model for composite structures in hygrothermal environments[J]. International Journal of Fatigue, 2018, 111: 299-307. doi: 10.1016/j.ijfatigue.2018.02.019
    [79]
    SAYYIDMOUSAVI A, BOUGHERARA H, FAWAZ Z. A multiscale approach for fatigue life prediction of polymer matrix composite laminates[J]. Journal of Reinforced Plastics and Composites, 2015, 34(13): 1099-1109. doi: 10.1177/0731684415588936
    [80]
    LI W, CAI H, LI C, et al. Micro-mechanics of failure for fatigue strength prediction of bolted joint structures of carbon fiber reinforced polymer composite[J]. Composite Structures, 2015, 124: 345-356. doi: 10.1016/j.compstruct.2015.01.026
    [81]
    HOSSEINI KORDKHEILI S A, TOOZANDEHJANI H, SOLTANI Z. A progressive multi-scale fatigue model for life prediction of laminated composites[J]. Journal of Composite Materials, 2017, 51(20): 2949-2960. doi: 10.1177/0021998317709610
    [82]
    TALREJA R. Damage and fatigue in composites-A personal account[J]. Composites Science and Technology, 2008, 68(13): 2585-2591. doi: 10.1016/j.compscitech.2008.04.042
    [83]
    SINGH C V, TALREJA R. A synergistic damage mechanics approach for composite laminates with matrix cracks in multiple orientations[J]. Mechanics of Materials, 2009, 41(8): 954-968. doi: 10.1016/j.mechmat.2009.02.008
    [84]
    SHEN H, YAO W, WU Y. Synergistic damage mechanic model for stiffness properties of early fatigue damage in composite laminates[C]//17th International Colloquium on Mechanical Fatigue of Metals, 2014, 74: 199-209.
    [85]
    CHEN X M, SUN X S, CHEN P H, et al. A delamination failure criterion considering the effects of through-thickness compression on the interlaminar shear failure of composite laminates[J]. Composite Structures, 2020, 241: 112121. doi: 10.1016/j.compstruct.2020.112121
    [86]
    NIXON-PEARSON O, HALLETT S, HARPER P, et al. Damage development in open-hole composite specimens in fatigue. Part 2: Numerical modelling[J]. Composite Structures, 2013, 106: 890-898. doi: 10.1016/j.compstruct.2013.05.019
    [87]
    SIMON I, BANKS-SILLS L, FOURMAN V. Mode I delamination propagation and R-ratio effects in woven composite DCB specimens for a multi-directional layup[J]. International Journal of Fatigue, 2017, 96: 237-251. doi: 10.1016/j.ijfatigue.2016.12.005
    [88]
    HARPER P W, HALLETT S R. A fatigue degradation law for cohesive interface elements-Development and application to composite materials[J]. International Journal of Fatigue, 2010, 32(11): 1774-1787. doi: 10.1016/j.ijfatigue.2010.04.006
    [89]
    KAWASHITA L F, HALLETT S R. A crack tip tracking algorithm for cohesive interface element analysis of fatigue delamination propagation in composite materials[J]. International Journal of Solids and Structures, 2012, 49(21): 2898-2913. doi: 10.1016/j.ijsolstr.2012.03.034
    [90]
    TAO C, QIU J, YAO W, et al. A novel method for fatigue delamination simulation in composite laminates[J]. Composites Science and Technology, 2016, 128: 104-115. doi: 10.1016/j.compscitech.2016.03.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(1392) PDF downloads(423) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return