Volume 47 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
CHEN Xingyu, WANG Liyan, CHEN Weihua, et al. Transpiration cooling test of porous plate in vacuum environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1594-1604. doi: 10.13700/j.bh.1001-5965.2020.0257(in Chinese)
Citation: CHEN Xingyu, WANG Liyan, CHEN Weihua, et al. Transpiration cooling test of porous plate in vacuum environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1594-1604. doi: 10.13700/j.bh.1001-5965.2020.0257(in Chinese)

Transpiration cooling test of porous plate in vacuum environment

doi: 10.13700/j.bh.1001-5965.2020.0257
Funds:

Basic Research Project of Science and Technology Commission 0327004

More Information
  • Corresponding author: WANG Liyan. E-mail: wang_liyan12@163.com
  • Received Date: 11 Jun 2020
  • Accepted Date: 04 Sep 2020
  • Publish Date: 20 Aug 2021
  • During high speed flight, the temperatures of the vehicle can reach extremely high values in the critical parts. To solve the problem of thermal protection for the critical parts, series of transpiration cooling tests using different materials as porous plate and water as coolant were carried out. The experimental platform which was used for the transient measurement in transpiration cooling process was developed. The cooling effects of different material porous plates under different heat flux were evaluated by measuring the inter and outer wall temperature.The results of the experiment indicate that transpiration cooling greatly reduces the temperature of the inner and outer walls of the porous plate, which plays an effective role in active thermal protection. For nickel and copper metal porous plates, the coolant flow rate is kept at about 3.5 g/s and the temperature of inner and outer wall is stable at about 30℃-50℃ when the heat flux is less than 120 kW/m2. And for ceramic porous plates, the coolant water flow rate is kept at about 0.32 g/s, and the temperature of inner and outer wall is basically stable at about 30℃-40℃ when the heat flux is less than 220 kW/m2. Moreover, for nickel, copper and ceramic porous plates, the temperature of the inner wall changes little under the condition of high heat flux of 315 kW/m2 during transpiring cooling, and the outer wall temperature stabilizes at about 260℃, 110℃ and 130℃, respectively. The coolant on the outer wall surface is in a completely vaporized state, and the vaporized phase transition position of the coolant is inside the porous plate. In addition, the temperature of the inner and outer walls of the porous plate rises rapidly when there is no transpiration cooling, and its equilibrium temperature is greatly increased compared with the transpiration cooling situation, which further shows the enormous application potential of transpiration cooling.

     

  • loading
  • [1]
    伍楠. 发散冷却关键问题的实验和数值研究[D]. 合肥: 中国科学技术大学, 2019.

    WU N. Experimental and numerical investigations on the key problems of transpiration cooling[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
    [2]
    STEELANT J. ATLLAS: Aero-thermal loaded material investigations for high-speed vehicles: AIAA 2008-2582[R]. Reston: AIAA, 2008.
    [3]
    BERTIN J J, CUMMINGS R M. Fifty years of hypersonics: Where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 511-536. doi: 10.1016/S0376-0421(03)00079-4
    [4]
    THIELBAHR W H, KAYS W M, MOFFAT R J. The turbulent boundary layer on a porous plate: Experimental heat transfer with uniform blowing and suction, with moderately strong acceleration[J]. Journal of Heat Transfer, 1972, 94(1): 111-118. doi: 10.1115/1.3449858
    [5]
    SIMPSON R L, MOFFAT R J, KAYS W M. The turbulent boundary layer on a porous plate: Experimental skin friction with variable injection and suction[J]. International Journal of Heat and Mass Transfer, 1969, 12(7): 771-789. doi: 10.1016/0017-9310(69)90181-1
    [6]
    BELLETTRE J, BATAILLE E, LALLEMAND A, et al. Studies of the transpiration cooling through a sintered stainless steel plate[J]. Experimental Heat Transfer, 2005, 18(1): 33-44. doi: 10.1080/08916150590884835
    [7]
    余磊, 姜培学, 任泽霈. 发汗冷却换热过程的实验研究与数值模拟[J]. 工程热物理学报, 2005, 26(1): 95-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200501026.htm

    YU L, JIANG P X, REN Z P. Experimental investigation and numerical simulation of convection heat transfer in transpiration cooling[J]. Journal of Engineering Thermophysics, 2005, 26(1): 95-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200501026.htm
    [8]
    金韶山. 液体火箭发动机推力室及钝体头锥发汗冷却研究[D]. 北京: 清华大学, 2008.

    JIN S S. Research on transpiration cooling of liquid rocket thrust chamber and blunt nose cone[D]. Beijing: Tsinghua University, 2008(in Chinese).
    [9]
    LIU Y Q, JIANG P, JIN S, et al. Transpiration cooling of a nose cone by various foreign gases[J]. International Journal of Heat and Mass Transfer, 2010, 53(23-24): 5364-5372. doi: 10.1016/j.ijheatmasstransfer.2010.07.019
    [10]
    BOEHRK H. Transpiration cooling at hypersonic flight-AKTiV on SHEFEX Ⅱ: AIAA 2014-2676[R]. Reston: AIAA, 2014.
    [11]
    LANGENER T, VON WOLFERSDORF J, STEELANT J. Experimental investigations on transpiration cooling for scramjet applications using different coolants[J]. AIAA Journal, 2011, 49(7): 1409-1419. doi: 10.2514/1.J050698
    [12]
    VAN FOREEST A, SIPPEL M, GVLHAN A, et al. Transpiration cooling using liquid water[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(4): 693-702. doi: 10.2514/1.39070
    [13]
    黄干, 廖致远, 祝银海, 等. 高温主流条件下相变发汗冷却实验研究[J]. 工程热物理学报, 2017, 38(4): 817-821. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201704022.htm

    HUANG G, LIAO Z Y, ZHU Y H, et al. Experimental investigation of transpiration cooling with phase change in high temperature flow[J]. Journal of Engineering Thermophysics, 2017, 38(4): 817-821(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201704022.htm
    [14]
    吴亚东, 朱广生, 高波, 等. 多孔介质相变发汗冷却主动热防护试验研究[J]. 宇航学报, 2017, 38(2): 212-218. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201702014.htm

    WU Y D, ZHU G S, GAO B, et al. An experimental study on the phase-changed transpiration cooling for active thermal protection[J]. Journal of Astronautics, 2017, 38(2): 212-218(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201702014.htm
    [15]
    熊宴斌. 超声速主流条件发汗冷却的流动和传热机理研究[D]. 北京: 清华大学, 2013.

    XIONG Y B. Study of the mechanism of flow and heat transfer on supersonic transpiration cooling[D]. Beijing: Tsinghua University, 2013(in Chinese).
    [16]
    孟松鹤, 党晓雪, 丁小恒, 等. 多孔C/C材料发汗冷却实验研究[J]. 固体火箭技术, 2015, 38(1): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201501021.htm

    MENG S H, DANG X X, DING X H, et al. Transpiration cooling tests of porous C/C[J]. Journal of Solid Rocket Technology, 2015, 38(1): 102-106(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GTHJ201501021.htm
    [17]
    WANG J, ZHAO L, WANG X, et al. An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant[J]. International Journal of Heat and Mass Transfer, 2014, 75: 442-449. doi: 10.1016/j.ijheatmasstransfer.2014.03.076
    [18]
    HE F, WANG J H. Numerical investigation on critical heat flux and coolant volume required for transpiration cooling with phase change[J]. Energy Conversion and Management, 2014, 80: 591-597. doi: 10.1016/j.enconman.2014.02.003
    [19]
    DING R, WANG J, HE F, et al. Numerical investigation on the performances of porous matrix with transpiration and film cooling[J]. Applied Thermal Engineering, 2019, 146: 422-431. doi: 10.1016/j.applthermaleng.2018.09.134
    [20]
    JIANG P, LIAO Z, HUANG Z, et al. Influence of shock waves on supersonic transpiration cooling[J]. International Journal of Heat and Mass Transfer, 2019, 129: 965-974. http://www.sciencedirect.com/science/article/pii/S0017931018312997
    [21]
    XIAO X, ZHAO G, ZHOU W. Numerical investigation of transpiration cooling for porous nose cone with liquid coolant[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1297-1306. doi: 10.1016/j.ijheatmasstransfer.2018.01.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(1)

    Article Metrics

    Article views(638) PDF downloads(180) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return