Volume 47 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
DAI Lintong, XING Yufeng. Exact solutions of thermal flutter of two-dimensional functionally graded panel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2097-2104. doi: 10.13700/j.bh.1001-5965.2020.0351(in Chinese)
Citation: DAI Lintong, XING Yufeng. Exact solutions of thermal flutter of two-dimensional functionally graded panel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2097-2104. doi: 10.13700/j.bh.1001-5965.2020.0351(in Chinese)

Exact solutions of thermal flutter of two-dimensional functionally graded panel

doi: 10.13700/j.bh.1001-5965.2020.0351
Funds:

National Natural Science Foundation of China 11672019

More Information
  • Corresponding author: XING Yufeng, E-mail: xingyf@buaa.edu.cn
  • Received Date: 21 Jul 2020
  • Accepted Date: 21 Aug 2020
  • Publish Date: 20 Oct 2021
  • For achieving the thermal flutter exact solutions of two-dimensional functionally graded panel and revealing the mechanism of the thermal flutter, based on the classical thin plate theory and the first-order piston theory, the characteristic governing differential equation of two-dimensional functionally graded panel in supersonic flow is established and exact solutions are obtained. Through the analysis of the eigenvalues, the mechanism of the panel flutter is investigated. According to different volume fraction of Functionally Graded Materials (FGM), the flutter boundary changes with Mach number in constant temperature field and nonlinear temperature field are studied respectively, and the results in two temperature fields are compared. By analyzing the flutter characteristics of panels with simply supported, fixed and integrated edges, it can be concluded that the flutter phenomenon is caused by the first-order derivative of deflection which leads to the asymmetry of system stiffness, and FGM can effectively improve the flutter boundary of the panel in the thermal environment. Meanwhile, the vibration properties of the FGM panel is simulated with ABAQUS, further validating the effectiveness of the present method.

     

  • loading
  • [1]
    杨智春, 夏巍, 孙浩. 高速飞行器壁板颤振分析的研究进展[J]. 结构强度研究, 2005(4): 10-18. https://www.zhangqiaokeyan.com/academic-journal-cn_structural-strength-study_thesis/0201262250583.html

    YANG Z C, XIA W, SUN H. Research progress on flutter analysis of high speed aircraft panel[J]. Study on Structural Strength, 2005(4): 10-18(in Chinese). https://www.zhangqiaokeyan.com/academic-journal-cn_structural-strength-study_thesis/0201262250583.html
    [2]
    王江峰, 伍贻兆, 季卫栋, 等. 高超声速复杂气动问题数值方法研究进展[J]. 航空学报, 2015, 36(1): 159-175. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501012.htm

    WANG J F, WU Y Z, JI W D, et al. Progress in numerical simulation techniques of hypersonic aerodynamic problems[J]. Acta Aeronautics et Astronautics Sinica, 2015, 36(1): 159-175(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501012.htm
    [3]
    PRAVEEN G N, REDDY J N. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates[J]. International Journal of Solids and Structures, 1998, 35(33): 4457-4476. doi: 10.1016/S0020-7683(97)00253-9
    [4]
    苑凯华, 邱志平. 压电复合材料壁板颤振的控制[J]. 北京航空航天大学学报, 2009, 35(12): 1429-1433. https://bhxb.buaa.edu.cn/CN/Y2009/V35/I12/1429

    YUAN K H, QIU Z P. Flutter control of composite panels with embedded piezoelectric materials[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(12): 1429-1433(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2009/V35/I12/1429
    [5]
    HOSSEINI M, FAZELZADEH S A, MARZOCCA P. Chaotic and bifurcation dynamic behavior of functionally graded curved panels under aero-thermal loads[J]. International Journal of Bifurcation and Chaos, 2011, 21(3): 931-954. doi: 10.1142/S0218127411028738
    [6]
    李丽丽, 赵永辉. 超音速下热壁板的颤振分析[J]. 动力学与控制学报, 2012, 10(1): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK201201016.htm

    LI L L, ZHAO Y H. The flutter analysis of thermal panel under supersonic flow[J]. Journal of Dynamics and Control, 2012, 10(1): 67-70(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK201201016.htm
    [7]
    SHAHVERDI H, KHALAFI V. Bifurcation analysis of FG curved panels under simultaneous aerodynamic and thermal loads in hypersonic flow[J]. Composite Structures, 2016, 146: 84-94. doi: 10.1016/j.compstruct.2016.03.011
    [8]
    黄小林, 王熙, 董雷, 等. 超音速气流中贴压电层的功能梯度材料混合板的颤振分析[J]. 应用力学学报, 2019, 36(6): 1429-1434. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201906027.htm

    HUANG X L, WANG X, DONG L, et al. Flutter analysis of functionally graded hybrid plates with piezoelectric layer in supersonic flow[J]. Chinese Journal of Applied Mechanics, 2019, 36(6): 1429-1434(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201906027.htm
    [9]
    DOWELL E H. Nonlinear oscillations of a fluttering plate. Ⅱ[J]. AIAA Journal, 1967, 5(10): 1856-1862. doi: 10.2514/3.4316
    [10]
    CHAKRAVERTY S, PRADHAN K K. Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions[J]. Aerospace Science and Technology, 2014, 36: 132-156. doi: 10.1016/j.ast.2014.04.005
    [11]
    LI F M, SONG Z G. Aeroelastic flutter analysis for 2D Kirchhoff and Mindlin panels with different boundary conditions in supersonic airflow[J]. Acta Mechanica, 2014, 225(12): 3339-3351. doi: 10.1007/s00707-014-1141-1
    [12]
    HEDGEPETH J M. Flutter of rectangular simply supported panels at high supersonic speeds[J]. Journal of the Aeronautical Sciences, 1957, 24(8): 563-573. doi: 10.2514/8.3908
    [13]
    SUN Q Z, XING Y F. Exact eigensolutions for flutter of two-dimensional symmetric cross-ply composite laminates at high supersonic speeds[J]. Composite Structures, 2018, 183: 358-370. doi: 10.1016/j.compstruct.2017.03.085
    [14]
    SOHN K J, KIM J H. Structural stability of functionally graded panels subjected to aero-thermal loads[J]. Composite Structures, 2008, 82(3): 317-325. doi: 10.1016/j.compstruct.2007.07.010
    [15]
    AZADI M. Free and forced vibration analysis of FG beam considering temperature dependency of material properties[J]. Journal of Mechanical Science and Technology, 2011, 25(1): 69-80. doi: 10.1007/s12206-010-1015-y
    [16]
    LI Q, IU V P, KOU K P. Three-dimensional vibration analysis of functionally graded material plates in thermal environment[J]. Journal of Sound and Vibration, 2009, 324(3-5): 733-750. doi: 10.1016/j.jsv.2009.02.036
    [17]
    CHI S H, CHUNG Y L. Corrigendum to "Mechanical behavior of functionally graded material plates under transverse load-Part Ⅱ: Numerical results"[J]. International Journal of Solids and Structures, 2007, 44(5): 1691. https://www.sciencedirect.com/science/article/pii/S0020768306003179
    [18]
    XU T F, XING Y F. Closed-form solutions for free vibration of rectangular FGM thin plates resting on elastic foundation[J]. Acta Mechanica Sinica, 2016, 32(6): 1088-1103. http://qikan.cqvip.com/Qikan/Article/Detail?id=7000104591
    [19]
    HOUBOLT J C. A study of several aerothermoelastic problems of aircraft structures in high-speed flight[D]. Verlag Leemann Zurich: ETH Zurich, 1958: 69-71.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(8)

    Article Metrics

    Article views(464) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return