Volume 47 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
CHENG Huhua, LI Juan, XIAO Yunqing, et al. Influence of wind deviation on rocket maximum aerodynamic load accuracy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2034-2042. doi: 10.13700/j.bh.1001-5965.2020.0358(in Chinese)
Citation: CHENG Huhua, LI Juan, XIAO Yunqing, et al. Influence of wind deviation on rocket maximum aerodynamic load accuracy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2034-2042. doi: 10.13700/j.bh.1001-5965.2020.0358(in Chinese)

Influence of wind deviation on rocket maximum aerodynamic load accuracy

doi: 10.13700/j.bh.1001-5965.2020.0358
Funds:

Strategic Priority Research Program of Chinese Academy of Sciences XDA17010105

More Information
  • Corresponding author: XIAO Yunqing, E-mail: xiaoyunqing00@163.com
  • Received Date: 24 Jul 2020
  • Accepted Date: 08 Jan 2021
  • Publish Date: 20 Oct 2021
  • The prediction accuracy of upper wind has an important impact on the flight safety of launch vehicle, which is mainly manifested in the impact on the accuracy of the maximum aerodynamic load. Based on wind field from sounding data in a region, the influence of wind deviation caused by upper wind forecast on the accuracy of rocket maximum aerodynamic load is analyzed. It is found that the accuracy of the maximum aerodynamic load forecast is significantly reduced with the extension of the upper wind forecast time. The relative error increases from 5.68% on the first day to 26.49% on the 11th day; the accuracy of the maximum aerodynamic load forecast is related to the season, with the highest forecast accuracy in autumn and the lowest in spring. These findings have reference value in the flight assurance and safety decision-making of rocket launch.

     

  • loading
  • [1]
    李效明, 许北辰, 陈存芸. 一种运载火箭减载控制工程方法[J]. 上海航天, 2004, 21(6): 7-14. doi: 10.3969/j.issn.1006-1630.2004.06.002

    LI X M, XU B C, CHEN C Y. An engineering method on the control of decreasing load for a launch vehicle[J]. Aerospace Shanghai, 2004, 21(6): 7-14(in Chinese). doi: 10.3969/j.issn.1006-1630.2004.06.002
    [2]
    廖沫, 张平, 陈宗基. 运载火箭载荷主动减缓控制律的设计与仿真[J]. 计算机仿真, 2006, 23(1): 54-58. doi: 10.3969/j.issn.1006-9348.2006.01.017

    LIAO M, ZHANG P, CHEN Z J. Design and simulation of active load-reducing control law of launch vehicle[J]. Computer Integrated Manufacturing Systems, 2006, 23(1): 54-58(in Chinese). doi: 10.3969/j.issn.1006-9348.2006.01.017
    [3]
    宋征宇. 运载火箭飞行减载控制技术[J]. 航天控制, 2013, 31(5): 3-8. doi: 10.3969/j.issn.1006-3242.2013.05.001

    SONG Z Y. Load control technology in launch vehicle[J]. Aerospace Control, 2013, 31(5): 3-8(in Chinese). doi: 10.3969/j.issn.1006-3242.2013.05.001
    [4]
    耿光有, 李东. 由火箭一级飞行弹道分析底部力等动力参数[J]. 导弹与航天运载技术, 2014, 335(5): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201405003.htm

    GENG G Y, LI D. Analysis of dynamic parameters such as base-force for 1st stage of a launch vehicle via the trajectory[J]. Missiles and Space Vehicles, 2014, 335(5): 10-13(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201405003.htm
    [5]
    杨伟奇, 许志, 唐硕, 等. 基于自抗扰的运载火箭主动减载控制技术[J]. 北京航空航天大学学报, 2016, 42(1): 130-137. doi: 10.13700/j.bh.1001-5965.2015.0051

    YANG W Q, XU Z, TANG S, et al. Active disturbance rejection control method on load relief system for launch vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 130-137(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0051
    [6]
    周毅, 候志明, 刘宇迪. 数值天气预报基础[M]. 北京: 气象出版社, 2003: 1-23.

    ZHOU Y, HOU Z M, LIU Y D. Fundamentals of numerical weather forecast[M]. Beijing: China Meteorological Press, 2003: 1-23.
    [7]
    HOUTEKAMER P L, LEFAIVRE L, DEROME J, et al. A system simulation approach to ensemble prediction[J]. Monthly Weather Review, 1996, 124(6): 1225-1242. doi: 10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2
    [8]
    井立红, 高婧, 赵忠, 等. 数值预报模式在新疆塔城地区降水预报中的检验[J]. 干旱气象, 2017, 35(1): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201701018.htm

    JING L H, GAO J, ZHAO Z, et al. Test and comparative analysis on precipitation forecast based on serveral numerical forecast models in Tacheng of Xinjiang[J]. Journal of Arid Meteorology, 2017, 35(1): 134-141(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201701018.htm
    [9]
    LORENZ E N. A study of the predictability of a 28-variable atmospheric model[J]. Tellus, 1965, 17(3): 321-333. doi: 10.3402/tellusa.v17i3.9076
    [10]
    LORENZ E N. Atmospheric predictability experiments with a large numerical model[J]. Tellus, 1982, 34(6): 505-513. doi: 10.3402/tellusa.v34i6.10836
    [11]
    陈超君, 王东海, 李国平, 等. 冬季高海拔复杂地形下GRAPES-Meso要素预报的检验评估[J]. 气象, 2012, 38(6): 657-668. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201206004.htm

    CHEN C J, WANG D H, LI G P, et al. A study of the GRAPES-Meso prediction verification for high altitude and complex terrain during winter time[J]. Meteorological Monthly, 2012, 38(6): 657-668(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201206004.htm
    [12]
    张宁娜, 黄阁, 吴曼丽, 等. 2010年国内外3种数值预报在东北地区的预报检验[J]. 气象与环境学报, 2012, 28(2): 28-33. doi: 10.3969/j.issn.1673-503X.2012.02.006

    ZHANG N N, HUANG G, WU M L, et al. Contrastive verification of three numerical prediction products in the northeast of China in 2010[J]. Journal of Meteorology and Environment, 2012, 28(2): 28-33(in Chinese). doi: 10.3969/j.issn.1673-503X.2012.02.006
    [13]
    潘留杰, 张宏芳, 朱伟军, 等. ECMWF模式对东北半球气象要素场预报能力的检验[J]. 气候与环境研究, 2013, 18(1): 111-123. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201301013.htm

    PAN L J, ZHANG H F, ZHU W J, et al. Forecast performance verification of the ECMWF model over the northeast hemisphere[J]. Climatic and Environmental Research, 2013, 18(1): 111-123(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201301013.htm
    [14]
    万瑜, 曹兴, 窦新英, 等. ECMWF细网格数值预报产品在乌鲁木齐东南大风预报中的释用[J]. 沙漠与绿洲气象, 2014, 8(1): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201401008.htm

    WAN Y, CAO X, DOU X Y, et al. The application of ECMWF refined net numerical forecast data in the southeast gale in Urumqi[J]. Desert and Oasis Meteorology, 2014, 8(1): 32-38(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201401008.htm
    [15]
    荀学义, 孟雪峰, 王学强, 等. T639和EC模式对内蒙古主要天气系统的预报性能检验[J]. 气象科技, 2014, 42(5): 832-838. doi: 10.3969/j.issn.1671-6345.2014.05.020

    XUN X Y, MENG X F, WANG X Q, et al. Verification and assessment of forecasting performance of general circulation systems in Inner Mongolia by T639 and EC model products[J]. Meteorological Science and Technology, 2014, 42(5): 832-838(in Chinese). doi: 10.3969/j.issn.1671-6345.2014.05.020
    [16]
    尹姗, 任宏昌. 2017年9-11月T639、ECMWF及日本模式中期预报性能检验[J]. 气象, 2018, 44(2): 326-333. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201802013.htm

    YIN S, REN H C. Performance verification of medium-range forecasting by T639, ECMWF and Japan models from September to November 2017[J]. Meteorological Monthly, 2018, 44(2): 326-333(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201802013.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(517) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return