Volume 47 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
LEI Yuchang, ZHANG Dengcheng, ZHANG Yanhuaet al. Unsteady aerodynamic modeling of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2138-2148. doi: 10.13700/j.bh.1001-5965.2020.0360(in Chinese)
Citation: LEI Yuchang, ZHANG Dengcheng, ZHANG Yanhuaet al. Unsteady aerodynamic modeling of circulation control airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2138-2148. doi: 10.13700/j.bh.1001-5965.2020.0360(in Chinese)

Unsteady aerodynamic modeling of circulation control airfoil

doi: 10.13700/j.bh.1001-5965.2020.0360
More Information
  • Corresponding author: ZHANG Dengcheng, E-mail: dengcheng_zhang@163.com
  • Received Date: 24 Jul 2020
  • Accepted Date: 21 Dec 2020
  • Publish Date: 20 Oct 2021
  • In view of the high coupling of the effects of jet parameters and angle of attack on the aerodynamic characteristics of airfoils in current circulation control technology, the accuracy of the corresponding unsteady aerodynamic models is poor. Based on the numerical simulation data of forced pitching vibration of circulation control airfoils, the steady aerodynamic interpolation of the airfoils is realized with the help of Kriging model. With the help of differential equation model, the linear differential equation modeling suitable for circulation control airfoil is completed, and the characteristic time constant and other parameters in linear differential equation models are identified by two-step linear regression parameter identification method. The nonlinear influence of high momentum coefficient and large amplitude flow is modified. The results show that the steady aerodynamic interpolation accuracy of the circulation control airfoil based on the Kriging model is higher than that of the traditional aerodynamic derivative model. The unsteady aerodynamic model can accurately predict the changes of aerodynamic force and torque coefficient under different flow conditions.

     

  • loading
  • [1]
    SHI Z W, ZHU J C, DAI X X, et al. Aerodynamic characteristics and flight testing of a UAV without control surfaces based on circulation control[J]. Journal of Aerospace Engineering, 2019, 32(1): 04018134. doi: 10.1061/(ASCE)AS.1943-5525.0000947
    [2]
    KANISTRAS K, VALAVANIS K P, RUTHERFORD M J. Foundations of circulation control based small-scale unmanned aircraft[M]. Berlin: Springer International Publishing, 2018: 37-46.
    [3]
    ENGLAR R J. Circulation control for high lift and drag generation on a STOL aircraft[J]. Journal of Aircraft, 1975, 12(5): 457-463. doi: 10.2514/3.59824
    [4]
    JOLSLIN R D, JONES G S. Application of circulation control technology (Progress in astronautics and aeronautics)[M]. Reston: AIAA, 2006: 105-113.
    [5]
    YAROS S F, SEXSTONE M G, HUEBNER L D, et al. Synergistic airframe-propulsion interactions and integrations[M]. Washington, D.C. : NASA, 1998: 14-28.
    [6]
    JONES G S, LIN J C, ALLEN B G, et al. Overview of CFD validation experiments for circulation control applications at NASA[C]//International Powered Lift Conference. London: Royal Aeronautical Society, 2008: 22-24.
    [7]
    ENGLAR R J, HUSON G G. Development of advanced circulation control wing high-lift airfoils[J]. Journal of Aircraft, 1984, 21(7): 476-483. doi: 10.2514/3.44996
    [8]
    ENGLAR R J. Circulation control pneumatic aerodynamics: Blown force and moment augmentation and modification-Past, present and future[C]//Fluids 2000 Conference and Exhibit, 2000: 2541.
    [9]
    XU H Y, QIAO C L, YANG H Q, et al. Active circulation control on the blunt trailing edge wind turbine airfoil[J]. AIAA Journal, 2018, 56(2): 554-570. doi: 10.2514/1.J056223
    [10]
    REGER R, NICKELS A, UKEILEY L, et al. On the acoustics of a circulation control airfoil[J]. Journal of Sound and Vibration, 2017, 388: 85-104. doi: 10.1016/j.jsv.2016.10.015
    [11]
    WARSOP C, CROWTHER W J. Fluidic flow control effectors for flight control[J]. AIAA Journal, 2018, 56(10): 3808-3824. doi: 10.2514/1.J056787
    [12]
    WARSOP C, CROWTHER W. NATO AVT-239 task group: Flight demonstration of fluidic flight controls on the MAGMA subscale demonstrator aircraft[C]//AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
    [13]
    汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8): 2331-2347. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608001.htm

    WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2331-2347(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608001.htm
    [14]
    孙海生, 张海酉, 刘志涛. 大迎角非定常气动力建模方法研究[J]. 空气动力学学报, 2011, 29(6): 733-737. doi: 10.3969/j.issn.0258-1825.2011.06.008

    SUN H S, ZHANG H Y, LIU Z T. Comparative evaluation of unsteady aerodynamics modeling approaches at high angle of attack[J]. Acta Aerodynamica Sinica, 2011, 29(6): 733-737(in Chinese). doi: 10.3969/j.issn.0258-1825.2011.06.008
    [15]
    LOTH J L, BOASSON M. Circulation controlled STOL wing optimization[J]. Journal of Aircraft, 1984, 21(2): 128-134. doi: 10.2514/3.48235
    [16]
    ENGLAR R J, SMITH M J, KELLEY S M, et al. Application of circulation control to advanced subsonic transport aircraft, Part Ⅰ-Airfoil development[J]. Journal of Aircraft, 1994, 31(5): 1160-1168. doi: 10.2514/3.56907
    [17]
    HOHOLIS G A. Assessment of fluidic control effectors using computational fluid dynamics[D]. Liverpool: University of Liverpool, 2016: 1-30.
    [18]
    KRUKOW I, DINKLER D. A reduced-order model for the investigation of the aeroelasticity of circulation-controlled wings[J]. CEAS Aeronautical Journal, 2014, 5(2): 145-156. doi: 10.1007/s13272-013-0097-5
    [19]
    SEMAAN R, EL SAYED M Y, RADESPIEL R. Sparse model of the lift gains of a circulation control wing with unsteady coanda blowing[M]. Berlin: Springer, 2019: 3-18.
    [20]
    LIN G F, LAN C, BRANDON J, et al. A generalized dynamic aerodynamic coefficient model for flight dynamics applications[C]//22nd Atmospheric Flight Mechanics Conference. Reston: AIAA, 1997: 3643.
    [21]
    GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109-1115. doi: 10.2514/3.46618
    [22]
    汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识[J]. 航空学报, 1996, 17(4): 391-398. doi: 10.3321/j.issn:1000-6893.1996.04.003

    WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4): 391-398(in Chinese). doi: 10.3321/j.issn:1000-6893.1996.04.003
    [23]
    孔轶男, 王立新, 何开锋, 等. 过失速机动的模糊逻辑建模仿真[J]. 北京航空航天大学学报, 2007, 33(10): 1174-1177. doi: 10.3969/j.issn.1001-5965.2007.10.011

    KONG Y N, WANG L X, HE K F, et al. Fuzzy logic models for unsteady post stall maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1174-1177(in Chinese). doi: 10.3969/j.issn.1001-5965.2007.10.011
    [24]
    付军泉, 史志伟, 陈坤, 等. 基于EKF的实时循环神经网络在非定常气动力建模中的应用[J]. 空气动力学学报, 2018, 36(4): 658-663. doi: 10.7638/kqdlxxb-2016.0131

    FU J Q, SHI Z W, CHEN K, et al. Applications of real-time recurrent neural network based on extended Kalman filter in unsteady aerodynamics modeling[J]. Acta Aerodynamica Sinica, 2018, 36(4): 658-663(in Chinese). doi: 10.7638/kqdlxxb-2016.0131
    [25]
    JONES G. Pneumatic flap performance for a 2D circulation control airfoil, stedy and pulsed[R]. Washington, D.C. : Langley Research Center, 2005: 191-244.
    [26]
    KHARATI KOOPAEE M. Effect of flow regime change from subsonic to transonic on the air loads of an oscillating airfoil[J]. Journal of Fluids and Structures, 2014, 50: 312-328. doi: 10.1016/j.jfluidstructs.2014.05.017
    [27]
    韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201611001.htm

    HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201611001.htm
    [28]
    龚正, 沈宏良. 非定常气动力非线性微分方程建模方法[J]. 航空学报, 2011, 32(1): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201101011.htm

    GONG Z, SHEN H L. Unsteady aerodynamic modeling method using nonlinear differential equations[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 83-90(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201101011.htm
    [29]
    雷玉昌, 张登成, 张艳华, 等. 超临界翼型的双射流环量控制研究[J]. 飞行力学, 2020, 38(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202004004.htm

    LEI Y C, ZHANG D C, ZHANG Y H, et al. Circulation control of double jet flow on supercritical airfoil[J]. Flight Dynamics, 2020, 38(4): 16-21(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202004004.htm
    [30]
    GREENWELL D, KHRABROV A, GOMAN M, et al. Two-step linear regression method for identification of high incidence unsteady aerodynamic model[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2001: 4080.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views(495) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return