Citation: | TANG Bo, XI Jianxiang, LIU Taiyang, et al. Design of finite-time cooperative guidance law for hypersonic vehicles in dive phase[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2105-2117. doi: 10.13700/j.bh.1001-5965.2020.0363(in Chinese) |
Focusing on the problem that multiple hypersonic vehicles in the dive phase attack a stationary target or a slowly moving target, a cooperative guidance law with Line-of-Sight (LOS) elevation and LOS azimuth constraint is designed based on finite-time theory. Firstly, the guidance process of the dive phase is divided into two directions: horizontal and longitudinal. Secondly, in the longitudinal LOS direction, the relative position difference and LOS velocity difference are introduced as errors into the guidance law, and the errors come from the hypersonic vehicles participating in the attack and their neighbors. Finally, in order to achieve the convergence of the horizontal and longitudinal LOS angles, the finite-time sliding mode guidance law is designed, and the upper bound of the time-varying disturbance is estimated by the designed adaptive disturbance observer. The finite-time convergence of the proposed cooperative guidance law is proved by Lyapunov function. The simulation results show that the proposed cooperative guidance law is correct and effective.
[1] |
CHUANG C H, MORIMOTO H. Periodic optimal cruise for a hypersonic vehicle with constraints[J]. Journal of Spacecraft and Rockets, 1997, 34(2): 165-171. doi: 10.2514/2.3205
|
[2] |
PHILLIPS T H. A common aero vehicle(CAV) model, description and employment guide[R]. Arlington: Schafer Corporation for AFRL and AFSPC, 2003: 7-8.
|
[3] |
王青, 冉茂鹏, 赵洋. 基于预测校正法的高超声速飞行器再入制导[J]. 北京航空航天大学学报, 2013, 39(12): 1563-1567. https://bhxb.buaa.edu.cn/CN/Y2013/V39/I12/1563
WANG Q, RAN M P, ZHAO Y. Reentry guidance for hypersonic vehicle based on predictor-corrector method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12): 1563-1567(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2013/V39/I12/1563
|
[4] |
贺从园. 高超声速飞行器再入段的最优制导[D]. 哈尔滨: 哈尔滨工业大学, 2011: 48-57. https://d.wanfangdata.com.cn/thesis/D262111
HE C Y. Optimal reentry guidance for hypersonic vehicles[D]. Harbin: Harbin Institute of Technology, 2011: 48-57(in Chinese). https://d.wanfangdata.com.cn/thesis/D262111
|
[5] |
张晓峰, 张惠平, 杨业, 等. 基于改进割线法的高超声速飞行器再入预测制导[J]. 战术导弹技术, 2016(1): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201601011.htm
ZHANG X F, ZHANG H P, YANG Y, et al. Improved secant method-based predictive reentry guidance for hypersonic vehicle[J]. Tactical Missile Technology, 2016(1): 56-63(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201601011.htm
|
[6] |
ZHU J W, LIU L H, TANG G J, et al. Optimal guidance with multi-targets for hypersonic vehicle in dive phase[C]//20136th International Conference on Recent Advances in Space Technologies (RAST). Piscataway: IEEE Press, 2013: 341-346.
|
[7] |
HOU D L, WANG Q, SUN X J, et al. Finite-time cooperative guidance laws for multiple missiles with acceleration saturation constraints[J]. IET Control Theory & Applications, 2015, 9(10): 1525-1535. doi: 10.1049/iet-cta.2014.0443
|
[8] |
刁兆师, 单家元. 带末端攻击角约束连续有限时间稳定制导律[J]. 宇航学报, 2014, 35(10): 1141-1149. doi: 10.3873/j.issn.1000-1328.2014.10.006
DIAO Z S, SHAN J Y. Continuous finite-time stabilization guidance law for terminal impact angle constrained flight trajectory[J]. Journal of Astronautics, 2014, 35(10): 1141-1149(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.10.006
|
[9] |
宋俊红, 宋申民, 徐胜利. 一种拦截机动目标的多导弹协同制导律[J]. 宇航学报, 2016, 37(12): 1306-1314. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201612005.htm
SONG J H, SONG S M, XU S L. A cooperative guidance law for multiple missiles to intercept maneuvering target[J]. Journal of Astronautics, 2016, 37(12): 1306-1314(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201612005.htm
|
[10] |
宋俊红, 宋申民, 徐胜利. 带有攻击角约束的多导弹协同制导律[J]. 中国惯性技术学报, 2016, 24(4): 554-560. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201604023.htm
SONG J H, SONG S M, XU S L. Cooperative guidance law for multiple missiles with impact angle constraints[J]. Journal of Chinese Inertial Technology, 2016, 24(4): 554-560(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ201604023.htm
|
[11] |
赵世钰, 周锐, 魏晨. 具有终端角度和终端时间约束的闭环制导律及其可行性分析(英文)[J]. 宇航学报, 2009, 30(3): 1064-1072. doi: 10.3873/j.issn.1000-1328.2009.03.039
ZHAO S Y, ZHOU R, WEI C. Design and feasibility analysis of a closed-form guidance law with both impact angle and time constraints[J]. Journal of Astronautics, 2009, 30(3): 1064-1072(in Chinese). doi: 10.3873/j.issn.1000-1328.2009.03.039
|
[12] |
LEE J I, JEON I S, TAHK M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 301-310. doi: 10.1109/TAES.2007.357135
|
[13] |
HARL N, BALAKRISHNAN S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1436-1449. doi: 10.1109/TCST.2011.2169795
|
[14] |
ZHOU J L, YANG J Y. Distributed guidance law design for cooperative simultaneous attacks with multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2439-2447. doi: 10.2514/1.G001609
|
[15] |
LYU T, LI C J, GUO Y N, et al. Three-dimensional finite-time cooperative guidance for multiple missiles without radial velocity measurements[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1294-1304. doi: 10.1016/j.cja.2018.12.005
|
[16] |
DONG X W, XIANG J, HAN L, et al. Distributed time-varying formation tracking analysis and design for second-order multi-agent systems[J]. Journal of Intelligent & Robotic Systems, 2017, 86(2): 277-289. doi: 10.1007%2Fs10846-016-0421-5
|
[17] |
TOMIC S, BEKO M, DINIS R, et al. Distributed RSS-based localization in wireless sensor networks using convex relaxation[C]//2014 International Conference on Computing, Networking and Communications (ICNC). Piscataway: IEEE Press, 2014: 853-857.
|
[18] |
SHI P, SHEN Q K. Cooperative control of multi-agent systems with unknown state-dependent controlling effects[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(3): 827-834. doi: 10.1109/TASE.2015.2403261
|
[19] |
姚辉, 席建祥, 王成, 等. 二阶多智能体系统自抗扰编队跟踪与避撞控制[J]. 北京航空航天大学学报, 2020, 46(5): 960-977. doi: 10.13700/j.bh.1001-5965.2019.0359
YAO H, XI J X, WANG C, et al. Active disturbance rejection based formation tracking and collision avoidance control for second-order multi-agent system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 960-977(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0359
|
[20] |
YAO H, WU J Y, XI J X, et al. Active disturbance rejection controller based time-varying formation tracking for second-order multi-agent systems with external disturbances[J]. IEEE Access, 2019, 7: 153317-153326. doi: 10.1109/ACCESS.2019.2948377
|
[21] |
SI Y J, SONG S M. Three-dimensional adaptive finite-time guidance law for intercepting maneuvering targets[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1985-2003. doi: 10.1016/j.cja.2017.04.009
|
[22] |
HE S M, LIN D F. Adaptive nonsingular sliding mode based guidance law with terminal angular constraint[J]. International Journal of Aeronautical and Space Sciences, 2014, 15(2): 146-152. doi: 10.5139/IJASS.2014.15.2.146
|
[23] |
SUN S, ZHOU D, HOU W T. A guidance law with finite time convergence accounting for autopilot lag[J]. Aerospace Science and Technology, 2013, 25(1): 132-137. doi: 10.1016/j.ast.2011.12.016
|
[24] |
ZHANG W J, DU X, XIA Q L. A three-dimensional cooperative guidance law based on consensus theory for maneuvering targets[J]. Mathematical Problems in Engineering, 2019, 2019: 1-11. https://ideas.repec.org/a/hin/jnlmpe/2120745.html
|
[25] |
谭诗利, 雷虎民, 王斌. 高超声速目标拦截含攻击角约束的协同制导律[J]. 北京理工大学学报, 2019, 39(6): 597-602. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201906008.htm
TAN S L, LEI H M, WANG B. Cooperative guidance law for hypersonic targets with constrained impact angle[J]. Transactions of Beijing Institute of Technology, 2019, 39(6): 597-602(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201906008.htm
|
[26] |
SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A. Smooth second-order sliding modes: Missile guidance application[J]. Automatica, 2007, 43(8): 1470-1476. doi: 10.1016/j.automatica.2007.01.008
|
[27] |
LEVANT A. Higher-order sliding modes, differentiation and output-feedback control[J]. International Journal of Control, 2003, 76(9-10): 924-941. doi: 10.1080/0020717031000099029
|
[28] |
BHAT S P, BERNSTEIN D S. Continuous finite-time stabilization of the translational and rotational double integrators[J]. IEEE Transactions on Automatic Control, 1998, 43(5): 678-682. doi: 10.1109/9.668834
|
[29] |
刘金琨. 滑模变结构控制MATLAB仿真: 基本理论与设计方法[M]. 3版. 北京: 清华大学出版社, 2015: 24-25.
LIU J K. Sliding mode control design and MATLAB simulation: The basic theory and design method[M]. 3rd ed. Beijing: Tsinghua University Press, 2015: 24-25(in Chinese).
|
[30] |
HONG Y, HUANG J, XU Y S. On an output feedback finite-time stabilization problem[J]. IEEE Transactions on Automatic Control, 2001, 46(2): 305-309. doi: 10.1109/9.905699
|
[31] |
BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766. doi: 10.1137/S0363012997321358
|
[32] |
YU S H, YU X H, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964. doi: 10.1016/j.automatica.2005.07.001
|