Citation: | CHEN Wu, ZHOU Yi. Investigation on aeroacoustic of tandem double cylinders by K-FWH acoustic analogy method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2118-2128. doi: 10.13700/j.bh.1001-5965.2020.0365(in Chinese) |
To study the intrinsic relation between the aerodynamic noise of tandem double cylinders and the large-scale vortex shedding behavior, we carry out large eddy simulations combined with the K-FWH equation. Firstly, the high-fidelity of the numerical treatment is verified by a comparison with the corresponding experimental results, and it has been proved that the combination of Wall Adaptive Local Eddy (WALE) viscosity model and K-FWH equation can accurately predict the distribution of noise spectrum density under different frequencies. The numerical results show that the vortex shedding frequencies of the upstream and downstream cylinders are the exactly same and the large-scale vortex shedding prove to be antiphase shedding. The mean surface drag coefficient of the upstream cylinder is larger than that of the downstream cylinder, but the pressure fluctuations on the downstream cylindrical surface are much more significant. The main contribution of the aerodynamic noise generated by flow around tandem cylinders is the dipole noise term (i.e. effects of the instantaneous pressure on the cylinder surface and the time derivative of the pressure), in which the time derivative of instantaneous pressure is the dominant component of sound pressure. The physical correlation between the instantaneous sound pressure and the lift and drag forces at a selected observation point is also explored. It is shown that the instantaneous sound pressure is mainly dominated by the sound pressure generated by the downstream cylinder. Owing to the influence of the upstream vortex shedding on the downstream cylinder vortex shedding, the downstream lift coefficient spectrum and the total noise spectrum exhibit discernable secondary peaks. Furthermore, by the Hilbert transform, it is found that the acoustic pressure strength at the observation point is not affected by the phase difference of the upstream and downstream vortex shedding. This research contributes to the understanding of the reduction of the aerodynamic noise of tandem double cylinders and sheds light on the engineering noise reduction.
[1] |
乔渭阳, 许开富, 武兆伟, 等. 大型客机起飞着陆过程噪声辐射特性对比分析[J]. 航空学报, 2008, 29(3): 534-541. doi: 10.3321/j.issn:1000-6893.2008.03.003
QIAO W Y, XU K F, WU Z W, et al. Noise radiation of large-scale commercial aircraft in take-off and landing[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 534-541(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.03.003
|
[2] |
CHOW L C, MAU K, REMY H. Landing gears and high lift devices airframe noise research[C]//8th AIAA/CEAS Aeroacoustics Conference & Exhibit. Reston: AIAA, 2002.
|
[3] |
LOCKARD D, KHORRAMI M, CHOUDHARI M, et al. Tandem cylinder noise predictions[C]//13th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2007: 3450.
|
[4] |
JENKINS L, KHORRAMI M, CHOUDHARI M, et al. Characterization of unsteady flow structures around tandem cylinders for component interaction studies in airframe noise[C]//11th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2005.
|
[5] |
JENKINS L, NEUHART D, MCGINLEY C, et al. Measurements of unsteady wake interference between tandem cylinders[C]//36th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2006.
|
[6] |
HUTCHESON F V, BROOKS T F. Noise radiation from single and multiple rod configurations[J]. International Journal of Aeroacoustics, 2012, 11(3-4): 291-333. doi: 10.1260/1475-472X.11.3-4.291
|
[7] |
FARASSAT F, CASPER J. Towards an airframe noise prediction methodology: Survey of current approaches[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
|
[8] |
BRōS G A, FREED D, WESSELS M, et al. Flow and noise predictions for the tandem cylinder aeroacoustic benchmarka[J]. Physics of Fluids, 2012, 24(3): 036101. doi: 10.1063/1.3685102
|
[9] |
PAPAIOANNOU G V, YUE D K P, TRIANTAFYLLOU M S, et al. Three-dimensionality effects in flow around two tandem cylinders[J]. Journal of Fluid Mechanics, 2006, 558: 387. doi: 10.1017/S0022112006000139
|
[10] |
刘敏, 刘飞, 胡亚涛, 等. 三维串列双圆柱绕流气动流场及声场模拟[J]. 工程热物理学报, 2008, 29(3): 403-406. doi: 10.3321/j.issn:0253-231X.2008.03.011
LIU M, LIU F, HU Y T, et al. Aerodynamics and aeroacoustics numerical simulation of flow past two circular cylinders in tandem arrangements[J]. Journal of Engineering Thermophysics, 2008, 29(3): 403-406(in Chinese). doi: 10.3321/j.issn:0253-231X.2008.03.011
|
[11] |
赵良举, 杨南奇, 吴朵, 等. 横掠二维串列双圆柱绕流气动噪声的数值模拟[J]. 重庆大学学报, 2009, 32(8): 943-949. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200908017.htm
ZHAO L J, YANG N Q, WU D, et al. Aeroacoustics numerical simulation of flow past tow-dimensional two circular cylinders in tandem arrangements[J]. Journal of Chongqing University, 2009, 32(8): 943-949(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200908017.htm
|
[12] |
龙双丽, 聂宏, 许鑫. 不同雷诺数下圆柱绕流气动噪声数值模拟[J]. 声学技术, 2011, 30(2): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201102001.htm
LONG S L, NIE H, XU X. Numerical simulation of noise induced by flow around a cylinder at different Reynolds number[J]. Technical Acoustics, 2011, 30(2): 111-116(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS201102001.htm
|
[13] |
余雷, 宋文萍, 韩忠华, 等. 基于混合RANS/LES方法与FW-H方程的气动声学计算研究[J]. 航空学报, 2013, 34(8): 1795-1805. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308006.htm
YU L, SONG W P, HAN Z H, et al. Aeroacoustic noise prediction using hybrid RANS/LES method and FW-H equation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1795-1805(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201308006.htm
|
[14] |
宁方立, 王善景, 马尧, 等. 串联圆柱体绕流气动噪声三维数值仿真[J]. 机械制造, 2014, 52(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG201401009.htm
NING F L, WANG S J, MA Y, et al. Aeroacoustics numerical simulation of flow past three-dimensional two circular cylinders in tandem arrangements[J]. Machinery, 2014, 52(1): 21-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXZG201401009.htm
|
[15] |
高威, 陈国勇. 串列双圆柱绕流的气动噪声特性分析[J]. 计算机辅助工程, 2018, 27(4): 41-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201804009.htm
GAO W, CHEN G Y. Characteristic analysis on aerodynamical noise of flow around tandem double cylinders[J]. Computer Aided Engineering, 2018, 27(4): 41-46(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201804009.htm
|
[16] |
周凯, 王震, 陈维山, 等. 格子Boltzmann方法在串列双圆柱绕流数值模拟中的应用研究[J]. 船舶力学, 2018, 22(2): 144-155. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201802003.htm
ZHOU K, WANG Z, CHEN W S, et al. Application of lattice Boltzmann method in flow past two cylinders in tandem arrangement[J]. Journal of Ship Mechanics, 2018, 22(2): 144-155(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201802003.htm
|
[17] |
DU B X, ZHANG W P, MING P J. Numerical simulation of flow-induced noise of two circular cylinders in tandem and side-by-side arrangements using a viscous/acoustic splitting method[J]. Journal of Ship Mechanics, 2019, 23(9): 1122-1138. http://en.cnki.com.cn/Article_en/CJFDTotal-CBLX201909009.htm
|
[18] |
葛明明, 王圣业, 王光学, 等. 基于混合雷诺平均/高精度隐式大涡模拟方法的高升力体气动噪声模拟[J]. 物理学报, 2019, 68(20): 190-202. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201920021.htm
GE M M, WANG S Y, WANG G X, et al. Aeroacoustic simulation of the high-lift airfoil using hybrid Reynolds averaged Navier-Stokes/high-order implicit large eddy simulation method[J]. Acta Physica Sinica, 2019, 68(20): 190-202(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201920021.htm
|
[19] |
周盼, 张权, 率志君, 等. 离心泵进水口形式设计及其对振动噪声的影响[J]. 排灌机械工程学报, 2015, 33(1): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201501006.htm
ZHOU P, ZHANG Q, SHUAI Z J, et al. Inlet design and its influence on vibration and noise of centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(1): 16-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201501006.htm
|
[20] |
蔡晓彤, 施卫东, 张德胜, 等. 基于直接边界元法的潜水排污泵内流噪声数值模拟[J]. 排灌机械工程学报, 2018, 36(12): 1264-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201812011.htm
CAI X T, SHI W D, ZHANG D S, et al. Numerical simulation of internal flow-induced noise in submersible sewage pump based on the direct boundary element method[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(12): 1264-1269(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201812011.htm
|
[21] |
余昊谦, 王洋, 韩亚文, 等. 旋涡自吸泵流致噪声模拟及降噪[J]. 排灌机械工程学报, 2019, 37(4): 302-306. https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201904006.htm
YU H Q, WANG Y, HAN Y W, et al. Numerical study on flow-induced noise and noise reduction of self-priming vortex pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(4): 302-306(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201904006.htm
|
[22] |
DI FRANCESCANTONIO P. A new boundary integral formulation for the prediction of sound radiation[J]. Journal of Sound and Vibration, 1997, 202(4): 491-509. https://www.sciencedirect.com/science/article/abs/pii/S0022460X96908433
|
[23] |
NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200. https://www.mendeley.com/catalogue/4c9b848a-b764-389c-9c84-9ecb098ed47a/
|
[24] |
FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321-342. https://ui.adsabs.harvard.edu/abs/1969RSPTA.264..321F/abstract
|
[25] |
LOCKARD D. Summary of the tandem cylinder solutions from the benchmark problems for airframe noise computations-I Workshop[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
|