Volume 47 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
LIANG Yuning, WANG Shaohua, JIN Xiangming, et al. Abnormal hand behavior detection based on area division and standard time[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1969-1979. doi: 10.13700/j.bh.1001-5965.2020.0369(in Chinese)
Citation: LIANG Yuning, WANG Shaohua, JIN Xiangming, et al. Abnormal hand behavior detection based on area division and standard time[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1969-1979. doi: 10.13700/j.bh.1001-5965.2020.0369(in Chinese)

Abnormal hand behavior detection based on area division and standard time

doi: 10.13700/j.bh.1001-5965.2020.0369
More Information
  • Corresponding author: ZHOU Dong, E-mail: zhoudong@buaa.edu.cn
  • Received Date: 29 Jul 2020
  • Accepted Date: 09 Oct 2020
  • Publish Date: 20 Oct 2021
  • Abnormal hand behavior detection during operation based on intelligent video surveillance systems can prevent human errors and improve human reliability. In order to solve the problems that the motion characteristics of hand operation are not obvious, and common abnormal detection and gesture recognition methods are not applicable, a detection technology of abnormal hand behavior based on area division and standard time is proposed. The skin color detection method based on ellipse model was used to detect the hand centroids in the video. The work area division method is proposed to define the unit task. The continuous operation was divided into unit tasks according to the work area of the hand centroid in each frame, and the start and end time and the duration of each unit task were obtained. Standard time was defined by normal working hours. And warnings were given to the unit tasks which exceed the standard time range. Experimental results show that the accuracy rate of unit task segmentation is higher than 93%, and the detection rate of abnormal behavior is higher than 86%. The proposed method can effectively detect abnormal hand behavior and provide technical support for human error monitoring and early warning.

     

  • loading
  • [1]
    TAO J, QIU D, YANG F, et al. A bibliometric analysis of human reliability research[J]. Journal of Cleaner Production, 2020, 260: 121041. doi: 10.1016/j.jclepro.2020.121041
    [2]
    朱旭东, 刘志镜. 基于主题隐马尔科夫模型的人体异常行为识别[J]. 计算机科学, 2012, 39(3): 251-255. doi: 10.3969/j.issn.1002-137X.2012.03.057

    ZHU X D, LIU Z J. Human abnormal behavior recognition based on topic hidden Markov model[J]. Computer Science, 2012, 39(3): 251-255(in Chinese). doi: 10.3969/j.issn.1002-137X.2012.03.057
    [3]
    YI X, DONG H, DONG X, et al. Human reliability analysis method on armored vehicle system considering error correction[J]. Journal of Shanghai Jiaotong University (Science), 2016, 21(4): 472-477. doi: 10.1007/s12204-016-1749-5
    [4]
    李鹏程, 陈国华, 张力, 等. 人因可靠性分析技术的研究进展与发展趋势[J]. 原子能科学技术, 2011, 45(3): 329-340. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201103015.htm

    LI P C, CHEN G H, ZHANG L, et al. Research review and development trends of human reliability analysis technique[J]. Atomic Energy Science and Technology, 2011, 45(3): 329-340(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201103015.htm
    [5]
    LIU P, QIU Y, HU J, et al. Expert judgments for performance shaping factors' multiplier design in human reliability analysis[J]. Reliability Engineering and System Safety, 2020, 194: 106343. doi: 10.1016/j.ress.2018.12.022
    [6]
    BEN MABROUK A, ZAGROUBA E. Abnormal behavior recognition for intelligent video surveillance systems: A review[J]. Expert Systems with Applications, 2018, 91: 480-491. doi: 10.1016/j.eswa.2017.09.029
    [7]
    ZHU B, XIE Y, LUO G, et al. An abnormal behavior detection method using optical flow model and openpose[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(5): 28-34.
    [8]
    LAZARIDIS L, DIMOU A, DARAS P. Abnormal behavior detection in crowded scenes using density heatmaps and optical flow[C]//Proceedings of the European Signal Processing Conference, 2018: 2074-2078.
    [9]
    MABROUK A B, ZAGROUBA E. Spatio-temporal feature using optical flow based distribution for violence detection[M]. Amsterdam: Elsevier Science, 2017.
    [10]
    MIN W, ZOU S, LI J. Human fall detection using normalized shape aspect ratio[J]. Multimedia Tools and Applications, 2019, 78(11): 14331-14353. doi: 10.1007/s11042-018-6794-7
    [11]
    WANG J, XU Z. Crowd anomaly detection for automated video surveillance[C]//Proceedings of the IET Seminar Digest, 2015: 15382040.
    [12]
    LI K, HUANG H, ZHENG Z, et al. Research of crowed abnormal behavior detection technology based on trajectory gradient[C]//International Symposium on Intelligence Computation and Applications, 2018: 486-500.
    [13]
    WANG T, LI Y, HU J, et al. A survey on vision-based hand gesture recognition[C]//1st International Conference on Smart Multimedia, 2018: 219-231.
    [14]
    XIA Z, LEI Q, YANG Y, et al. Vision-based hand gesture recognition for human-robot collaboration: A survey[C]//Proceedings of the 20195th International Conference on Control, Automation and Robotics, 2019: 198-205.
    [15]
    郭全利. 动态手势识别关键算法研究[D]. 锦州: 辽宁工业大学, 2018.

    GUO Q L. Research on key algorithms of dynamic gesture recognition[D]. Jinzhou: Liaoning University of Technology, 2018(in Chinese).
    [16]
    张兆杨, 杨高波, 刘志. 视频对象分割提取的原理与应用[M]. 北京: 科学出版社, 2009.

    ZHANG Z Y, YANG G B, LIU Z. Principle and application of video object segmentation and extraction[M]. Beijing: Science Press, 2009(in Chinese).
    [17]
    ZIVKOVIC Z, HEIJDEN F V D. Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pattern Recognition Letters, 2006, 27(7): 773-780. doi: 10.1016/j.patrec.2005.11.005
    [18]
    ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[C]//Proceedings of the 17th International Conference on Pattern Recognition, 2004: 28-31.
    [19]
    SUTTON R S. Learning to predict by the methods of temporal differences[J]. Machine Learning, 1988, 3(1): 9-44.
    [20]
    HSU R L, ABDEL-MOTTALEB M, JAIN A K. Face detection in color images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 696-706. doi: 10.1109/34.1000242
    [21]
    孙燮华. 数字图像处理: 原理与算法[M]. 北京: 机械工业出版社, 2010.

    SUN X H. Digital image processing: Principle and algorithm[M]. Beijing: China Machine Press, 2010(in Chinese).
    [22]
    易树平, 郭伏. 基础工业工程[M]. 北京: 机械工业出版社, 2014.

    YI S P, GUO F. Basic industrial engineering[M]. Beijing: China Machine Press, 2014(in Chinese).
    [23]
    邱慧慧. 面向离散制造业的标准时间制定系统研究[D]. 济南: 山东大学, 2009.

    QIU H H. Research on discrete manufacturing industries-oriented standard time formulation system[D]. Jinan: Shandong University, 2009(in Chinese).
    [24]
    陈琼, 鱼滨. 基于手部轨迹识别的ATM智能视频监控系统[J]. 计算机工程, 2012, 38(11): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201211044.htm

    CHEN Q, YU B. Intelligent video surveillance system of automatic teller machine based on hand trajectory recognition[J]. Computer Engineering, 2012, 38(11): 143-146(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201211044.htm
    [25]
    陈若愚. 超市中人体异常行为识别方法的研究[D]. 长沙: 国防科学技术大学, 2013.

    CHEN R Y. A research on abnormal behavior detection methods in supermarket[D]. Changsha: National University of Defense Technology, 2013(in Chinese).
    [26]
    刘刚. 基于手部图像特征分析的超市中异常行为的检测[D]. 成都: 西华大学, 2017.

    LIU G. Detection of abnormal behavior in supermarket based on hand image feature analysis[D]. Chengdu: Xihua University, 2017(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(541) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return