Citation: | CHEN Shanshan, JIN Biao, ZHAO Liqian, et al. Dynamic SBAS message scheduler algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1996-2005. doi: 10.13700/j.bh.1001-5965.2020.0375(in Chinese) |
Satellite Based Augmentation Systems (SBAS) provide SBAS messages through GEO satellites to improve the performance of GNSS in order to meet the navigation needs of civil aviation users, and reasonable and effective message content and broadcast schedule design are important for SBAS to achieve high-quality services. In order to improve the flexibility of message scheduler and avoid the waste of broadcast resources caused by filling the null messages, this paper proposes an automatic scheduler of SBAS message. Under the premise of meeting the requirements of international standards, this scheduler comprehensively uses the age of SBAS message and the maximum broadcast period to realize the automatic selection of the message type to be broadcast. At the same time, this paper uses NTMF data to analyze the characteristics of the current SBAS message, and evaluates the application effect of the proposed scheduler in single- and dual-frequency SBAS message. The results show that this scheduler can ensure that the message schedule meets the requirements of international standards, can achieve the priority broadcast of important messages, and can realize the nearly equal proportion shortening of the broadcast interval of each message type by dynamic allocation of spare time slot. Compared with rigid scheduler, the integrity message broadcast interval is shortened by about 15.0% and the first positioning time is shortened by about 8% for the single-frequency SBAS, and the first positioning time is shortened by about 6.5% for the dual-frequency SBAS message. Compared with BDSBAS B1C rigid scheduler, the integrity message broadcast interval is shortened by about 14.7% and the first positioning time is shortened by about 16.7%. The scheduler can effectively improve the efficiency of SBAS message broadcasting and realize 100% effective use of SBAS broadcast resource.
[1] |
WALTER T, SHALLBERG K, ALTSHULER E, et al. WAAS at 15[J]. Navigation, 2018, 65(4): 581-600. doi: 10.1002/navi.252
|
[2] |
SCHEMPP T. WAAS development changes since commissioning[EB/OL]. (2019-06-03)[2020-07-01]. https://www.icao.int/APAC/APAC-RSO/GBASSBAS%20Implementation%20Workshop/1-4_WAAS_Development_Changes_Since_Commissioning_final%20(T%20Schemmp).pdf.
|
[3] |
吴云, 杨鑫春, 陈慧. 多系统多频率的EGNOS系统完备性模拟分析[J]. 武汉大学学报(信息科学版), 2012, 37(3): 269-273. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201203005.htm
WU Y, YANG X C, CHEN H. Simulation and analysis of EGNOS system's integrity under multi-system with multi-frequency[J]//Geomatics and Information Science of Wuhan University, 2012, 37(3): 269-273(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201203005.htm
|
[4] |
SEYNAT C, FLAMENT D. European geostationary navigation overlay service EGNOS status update[C]//The ION 23rd International Technical Meeting, 2010: 1270-1299.
|
[5] |
RAO S. GAGAN-The Indian satellite based augmentation system[J]. Indian Journal of Radio & Space Physics, 2007, 36: 293-302.
|
[6] |
SAITO S. MSAS system development[EB/OL]. (2019-06-03)[2020-07-01]. https://www.icao.int/APAC/APAC-RSO/GBASSBAS%20Implementation%20Workshop/1-6_MSAS%20System%20Development_Rev2%20(S%20Saito).pdf.
|
[7] |
楼益栋, 郑福, 龚晓鹏. QZSS系统在中国区域增强服务性能评估与分析[J]. 武汉大学学报(信息科学版), 2016, 41(3): 298-303. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201603003.htm
LOU Y D, ZHENG F, GONG X P. Evaluation of QZSS system augmentation service performance in China region[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 298-303(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201603003.htm
|
[8] |
The development plan of the BeiDou satellite-based augmentation system (BDSBAS)[EB/OL]. (2017-07-17)[2020-07-01]. https://www.icao.int/APAC/Meetings/2017%20CNSSG21/WP16_China%20AI.5%20-%20Rev%20-%20Beidon%20Augumentation%20System.pdf.
|
[9] |
陈俊平, 杨赛男, 周建华, 等. 综合伪距相位观测的北斗导航系统广域差分模型[J]. 测绘学报, 2017, 46(5): 537-546. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201705002.htm
CHEN J P, YANG S N, ZHOU J H, et al. A pseudo range and phase combined SBAS differential correction model[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5): 537-546(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201705002.htm
|
[10] |
ICAO. Annex 10. Vol. I. Radio navigation aids[S]. Montreal: ICAO, 2018.
|
[11] |
RTCA. Minimum operational performance standards for global positioning system/satellite based augmentation system airborne equipment: RTCA DO-229E[S]. Washington, D.C. : RTCA, 2016.
|
[12] |
LAWRENCE D, EVANS J, CHAO Y C, et al. Integration of wide area DGPS with local area kinematic DGPS[C]//IEEE Position Location and Navigation Symposium. Piscataway: IEEE Press, 1996: 524-529.
|
[13] |
WALTER T, NEISH A, BLANCH J. A rigid message scheduler for SBAS[C]//2020 IEEE/ION Position, Location and Navigation Symposium. Piscataway: IEEE Press, 2020: 19674219.
|
[14] |
YUN Y, LEE E, HEO M B, et al. KASS message scheduler design[J]. Journal of Positioning, Navigation, and Timing, 2016, 5(4): 193-202. doi: 10.11003/JPNT.2016.5.4.193
|
[15] |
SALOS D, MABILLEAU M, RODRIGUEZ C, et al. SBAS DFMC performance analysis with the SBAS DFMC service volume software prototype (DSVP)[C]//International Technical Symposium on Navigation and Timing, 2017: 1-7.
|
[16] |
黄双临, 辛洁, 王冬霞, 等. 星基增强系统电文及播发特性研究[J]. 数字通信世界, 2019(2): 4-6. doi: 10.3969/J.ISSN.1672-7274.2019.02.002
HUANG S L, XIN J, WANG D X, et al. Research on propagating message and strategy of satellite-based augmentation system[J]. Digital Communication World, 2019(2): 4-6(in Chinese). doi: 10.3969/J.ISSN.1672-7274.2019.02.002
|
[17] |
梁曦, 陶晓霞, 周昀, 等. 星基增强系统导航电文及完好性信息研究[J]. 空间电子技术, 2016, 13(5): 39-47. doi: 10.3969/j.issn.1674-7135.2016.05.008
LIANG X, TAO X X, ZHOU J, et al. Research of SBAS navigation message and integrity message[J]. Space Electronic Technology, 2016, 13(5): 39-47(in Chinese). doi: 10.3969/j.issn.1674-7135.2016.05.008
|
[18] |
IWG. SBAS DFMC L5 interface control document[R]. [S. l. ]: IWG, 2017.
|
[19] |
EUROCAE. Minimum operational performance standard for galileo/global positioning system/satellite-based augmentation system airborne equipment: ED-259[S]. Saint-Denis: EUROCAE, 2019.
|