Volume 47 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
DAI Jinling, XU Aiqiang, YU Chao, et al. Online prediction model of the state of engine based on multivariate KELM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2277-2286. doi: 10.13700/j.bh.1001-5965.2020.0389(in Chinese)
Citation: DAI Jinling, XU Aiqiang, YU Chao, et al. Online prediction model of the state of engine based on multivariate KELM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2277-2286. doi: 10.13700/j.bh.1001-5965.2020.0389(in Chinese)

Online prediction model of the state of engine based on multivariate KELM

doi: 10.13700/j.bh.1001-5965.2020.0389
More Information
  • Corresponding author: XU Aiqiang, E-mail: 1159416532@qq.com
  • Received Date: 04 Aug 2020
  • Accepted Date: 25 Oct 2020
  • Publish Date: 20 Nov 2021
  • In order to solve the problem that the state changes of only one variable instead of related variables are considered in the process of aircraft engine condition prediction, an online prediction model of the state of engine based on multivariate Kernel Extreme Learning Machine (KELM) is proposed. First, the phase space reconstruction of multivariable time series is used to transform the temporal correlation into the spatial correlation. Then, by studying the relationship between KELM and the Kernel Recursive Least Squares (KRLS), KRLS is extended into the online sparse KELM framework. Finally, the samples are made sparse by using approximate linear dependence to control the growth of network structure, and ultimately online prediction of multivariable nonstationary series is realized. The prediction results of engine flight parameters of a certain trainer show that, compared with KB-IELM, NOS-KELM and FF-OSKELM in the premise of online prediction, the prediction accuracy is decreased by 90.61%, 58.14% and 25.77% respectively, and the prediction stability is decreased by 99.61%, 75.03% and 28.59% respectively, with higher prediction accuracy and stability. All methods get best results with multivariate inputs, which also proves thatthe consideration of multivariable state factors is of great significance to the online prediction of single variable as well.

     

  • loading
  • [1]
    ZHEN T, QIAN C, BUSRA G, et al. Electric vehicle air conditioning system performance prediction based on artificial neural network[J]. Applied Thermal Engineering, 2015, 89: 101-114. doi: 10.1016/j.applthermaleng.2015.06.002
    [2]
    SAPANKEVYCH N, SANKAR R. Time series prediction using support vector machines: A survey[J]. IEEE Computational Intelligence Magazine, 2009, 4(2): 24-38. doi: 10.1109/MCI.2009.932254
    [3]
    ZHOU D, GAO F, GUAN X. Application of accurate online support vector regression in energy price forecast[C]//World Congress on Intelligent Control & Automation. Piscataway: IEEE Press, 2004: 1845-1849.
    [4]
    SHI Z, HAN M. Support vector echo-state machine for chaotic time-series prediction[J]. IEEE Transactions on Neural Networks, 2007, 18: 359-372. doi: 10.1109/TNN.2006.885113
    [5]
    PINO R, PARRENO J, GOMEZ A, et al. Forecasting next-day price of electricity in the Spanish energy market using artificial neural networks[J]. Engineering Applications of Artificial Intelligence, 2008, 21(1): 53-62. doi: 10.1016/j.engappai.2007.02.001
    [6]
    BAI Y, LI T. Robust fuzzy inference system for prediction of time series with outliers[C]//2012 IEEE International Conference on Fuzzy Theory and it's Applications(iFuzzY). Piscataway: IEEE Press, 2012.
    [7]
    HUANG G B, WANG D H, LAN Y. Extreme learning machines: A survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122. doi: 10.1007/s13042-011-0019-y
    [8]
    HUANG G B, CHEN L, SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 879-892. doi: 10.1109/TNN.2006.875977
    [9]
    HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501. doi: 10.1016/j.neucom.2005.12.126
    [10]
    HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man and Cybernetics Part B, 2012, 42(2): 513-529. doi: 10.1109/TSMCB.2011.2168604
    [11]
    GUO L, HAO J H, LIU M. An incremental extreme learning machine for online sequential learning problems[J]. Neurocomputing, 2014, 128: 50-58. doi: 10.1016/j.neucom.2013.03.055
    [12]
    SCARDAPANE S, COMMINIELLO D, SCARPINITI M, et al. Online sequential extreme learning machine with kernels[J]. Neural Networks and Learning Systems, 2015, 26(9): 2214-2220. doi: 10.1109/TNNLS.2014.2382094
    [13]
    LIANG N Y, HUANG G B, SARATCHANDRAN P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17: 1411-1423. doi: 10.1109/TNN.2006.880583
    [14]
    ZHOU X R, LIU Z J, ZHU C X. Online regularized and kernelized extreme learning machines with forgetting mechanism[J]. Mathematical Problems in Engineering, 2014, 2014: 1-11. http://www.onacademic.com/detail/journal_1000038057511710_19ea.html
    [15]
    ZHOU X R, WANG G S. Cholesky factorization based online regularized and kernelized extreme learning machines with forgetting mechanism[J]. Neurocomputing, 2016, 174: 1147-1155. doi: 10.1016/j.neucom.2015.10.033
    [16]
    张伟, 许爱强, 高明哲. 基于稀疏核增量超限学习机的机载设备在线状态预测[J]. 北京航空航天大学学报, 2017, 43(10): 2089-2098. doi: 10.13700/j.bh.1001-5965.2016.0802

    ZHANG W, XU A Q, GAO M Z. Online condition prediction of avionic devices based on sparse kernel incremental extreme learning machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2089-2098(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0802
    [17]
    张伟, 许爱强, 高明哲. 一种基于积累一致性测量的在线状态预测算法[J]. 上海交通大学学报, 2017, 51(11): 1391-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201711016.htm

    ZHANG W, XU A Q, GAO M Z. An online condition prediction algorithm based on cumulative coherence measurement[J]. Journal of Shanghai Jiaotong University, 2017, 51(11): 1391-1398(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201711016.htm
    [18]
    ZHANG W, XU A, PING D, et al. An improved kernel-based incremental extreme learning machine with fixed budget for nonstationary time series prediction[J]. Neural Computing and Applications, 2017, 31(6): 1-16.
    [19]
    朱敏, 许爱强, 陈强强, 等. 一种基于改进KELM的在线状态预测方法[J]. 北京航空航天大学学报, 2019, 45(7): 1370-1379. doi: 10.13700/j.bh.1001-5965.2018.0685

    ZHU M, XU A Q, CHEN Q Q, et al. An improved KELM based online condition prediction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1370-1379(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0685
    [20]
    HAN M, ZHANG R, XU M. Multivariate chaotic time series prediction based on ELM-PLSR and hybrid variable selection algorithm[J]. Neural Processing Letters, 2017, 46(2): 705-717. doi: 10.1007/s11063-017-9616-4
    [21]
    WANG X, HAN M. Multivariate time series prediction based on multiple kernel extreme learning machine[C]//International Joint Conference on Neural Networks. Piscataway: IEEE Press, 2014: 198-201.
    [22]
    徐睿, 梁循, 齐金山, 等. 极限学习机前沿进展与趋势[J]. 计算机学报, 2019, 42(7): 1640-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201907012.htm

    XU R, LIANG X, QI J S, et al. Advances and trends in extreme learning machine[J]. Chinese Journal of Computers, 2019, 42(7): 1640-1670(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201907012.htm
    [23]
    ENGEL Y, MANNOR S, MEIR R. The kernel recursive least-squares algorithm[J]. IEEE Transactions on Signal Process, 2004, 52(8): 2275-2285. doi: 10.1109/TSP.2004.830985
    [24]
    FLORIS T. Detecting strange attractors in turbulence, in dynamical systems and turbulence, Warwick, 1980[J]. Lecture Notes in Mathematics, 1981: 898. http://www.researchgate.net/publication/287227084_detecting_strange_attractors_in_turbulence_in_dynamical_systems_and_turbulence_warwick_1980
    [25]
    PRINCIPE J C, LIU W, HAYKIN S. Kernel adaptive filtering: A comprehensive introduction[J]. IEEE Computational Intelligence Magazine, 2010, 5(3): 52-55. doi: 10.1109/MCI.2010.937324
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views(479) PDF downloads(184) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return