Volume 47 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
YANG Zicheng, XIAN Yong, LI Shaopeng, et al. Prediction method of intercept time and intercept point based on learning mid-course antimissile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2360-2368. doi: 10.13700/j.bh.1001-5965.2020.0409(in Chinese)
Citation: YANG Zicheng, XIAN Yong, LI Shaopeng, et al. Prediction method of intercept time and intercept point based on learning mid-course antimissile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2360-2368. doi: 10.13700/j.bh.1001-5965.2020.0409(in Chinese)

Prediction method of intercept time and intercept point based on learning mid-course antimissile

doi: 10.13700/j.bh.1001-5965.2020.0409
More Information
  • Corresponding author: XIAN Yong, E-mail: xy603xy@163.com
  • Received Date: 09 Aug 2020
  • Accepted Date: 27 Oct 2020
  • Publish Date: 20 Nov 2021
  • Accurately predicting the intercept point and intercept time of the interceptor in real time is an effective way to realize the mid-course penetration of ballistic missiles. In order to predict the intercept point coordinates and intercept time during the mid-course penetration process of ballistic missile, an online prediction method based on supervised learning is proposed in this paper. Using the shutdown parameters and the shutdown time of the boost stage of the interceptor as inputs, the prediction model of intercept time and intercept point was established. Based on the multi-layer perceptron neural network, a supervised learning algorithm was formulated, and the interceptor's parameters were obtained through the attack and defense simulation to make the set of training data. The network training was completed offline. The simulation results show that the neural network can effectively predict the interception time and the coordinates of interception point online, and the relative error of the prediction results is 0.124 3% and 0.128 5% respectively; the average error of the prediction results of intercept time is 0.224 0 s; the average distance error of the prediction results of intercept point is 2 016.48 m. They all meet the accuracy requirements.

     

  • loading
  • [1]
    鲜勇, 郑晓龙. 弹道导弹攻防仿真系统建模[M]. 北京: 国防工业出版社, 2013: 14.

    XIAN Y, ZHENG X L. Modeling of ballistic missile attack and defense simulation system[M]. Beijing: National Defense Industry Press, 2013: 14(in Chinese).
    [2]
    THOMAS K, IAN W, WES R. Missile defense 2020: Next steps for defending the homeland[R]. Washington, D.C. : Center for Strategic International Studies, 2017.
    [3]
    王虎, 邓大松. 地基拦截弹发展研究[J]. 战术导弹技术, 2019(3): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201903006.htm

    WANG H, DENG D S. Study on development of ground-based interceptor[J]. Tactical Missile Technology, 2019(3): 34-40(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201903006.htm
    [4]
    田宪科, 张科. 导弹拦截点计算及其仿真分析[J]. 飞行力学, 2011, 29(2): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201102024.htm

    TIAN X K, ZHANG K. Calculation and simulation analysis of missile intercept point[J]. Flight Dynamics, 2011, 29(2): 93-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201102024.htm
    [5]
    张华伟, 董茜, 王文灿, 等. 基于预测命中点的反弹道导弹拦截方法研究[J]. 弹箭与制导学报, 2007(2): 196-199. doi: 10.3969/j.issn.1673-9728.2007.02.062

    ZHANG H W, DONG Q, WANG W C, et al. Research way of intercepting ballistic missile based on the forecasting hitting position[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007(2): 196-199(in Chinese). doi: 10.3969/j.issn.1673-9728.2007.02.062
    [6]
    王君, 周林, 雷虎民. 地空导弹与空中目标遭遇点预测模型和算法[J]. 系统仿真学报, 2009, 21(1): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200901022.htm

    WANG J, ZHOU L, LEI H M. Forecast model and arithmetic on hit point of ground-to-air missile and aerial target[J]. Journal of System Simulation, 2009, 21(1): 80-83(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200901022.htm
    [7]
    ZARCHAN P. Tactical and strategic missile guidance[M]. 6th ed. Reston: AIAA, 2012: 213-324, 715-862.
    [8]
    谢经纬, 陈万春. 大气层外拦截弹建模与攻防效能分析[J]. 北京航空航天大学学报, 2018, 44(9): 1826-1838. doi: 10.13700/j.bh.1001-5965.2018.0095

    XIE J W, CHEN W C. Exo-atmospheric interceptor modeling and penetration and defense effectiveness analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1826-1838(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0095
    [9]
    SONG E J, TAHK M J. Three-dimensional midcourse guidance using neural networks for interception of ballistic targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 404-414. doi: 10.1109/TAES.2002.1008975
    [10]
    SONG E J, LEE H, TAHK M. On-line suboptimal midcourse guidance using neural networks[C]//Proceedings of the 35th SICE Annual Conference International Session Papers. Piscataway: IEEE Press, 1996: 1313-1318.
    [11]
    SONG E J, TAHK M J. Real-time midcourse guidance with intercept point prediction[J]. Control Engineering Practice, 1998, 6(8): 957-967. doi: 10.1016/S0967-0661(98)00041-0
    [12]
    袁亚军. 中远程导弹防御指控系统设计与仿真评估研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 11-13.

    YUAN Y J. The designation and research on middle-long range missile defense system command and control[D]. Harbin: Harbin Institute of Technology, 2017: 11-13(in Chinese).
    [13]
    CHIA H, TAN C, SUNG S. Enhancing knowledge discovery via association-based evolution of neural logic networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(7): 889-901. doi: 10.1109/TKDE.2006.111
    [14]
    XU J X, HOU Z S. Notes on data-driven system approaches[J]. Acta Automatica Sinica, 2009, 35(6): 668-675. http://aas.net.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=13329
    [15]
    CHEN S, BILLINGS S A. Neural networks for nonlinear dynamic system modelling and identification[J]. International Journal of Control, 1991, 56(2): 319-346. http://www.onacademic.com/detail/journal_1000035255651810_b8c0.html
    [16]
    LESHNO M, LIN V Y, PINKUS A, et al. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[J]. Neural Networks, 1991, 6(6): 861-867. http://archive.nyu.edu/bitstream/2451/14384/1/IS-91-26.pdf
    [17]
    GOLIK P, DOETSCH P, NEY H. Cross-entropy vs. squared error training: A theoretical and experimental comparison[C]//Interspeech, 2013: 1756-1760.
    [18]
    ALMÁSI A, WOZ'NIAK S, CRISTEA V, et al. Review of advances in neural networks: Neural design technology stack[J]. Neurocomputing, 2016, 174: 31-41. http://cld.pt/dl/download/5cf0dc5f-72b0-4b05-953e-484f624b49f6/MyPapers/l984jnf_5506.pdf
    [19]
    GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016.
    [20]
    刘孝马. 大气层外动能拦截器中段制导相关问题研究[D]. 长沙: 国防科学技术大学, 2015: 13.

    LIU X M. Research on the problems about midcourse guidance for exo-atmospheric kill vehicle[D]. Changsha: National University of Defense Technology, 2015: 13(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(5)

    Article Metrics

    Article views(603) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return