Citation: | ZHENG Zhong, ZHAO Luxi, HE Feng, et al. Real-time performance optimization of TTE network based on "pay bursts only once" principle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2503-2513. doi: 10.13700/j.bh.1001-5965.2020.0415(in Chinese) |
The development of deterministic communication promotes the introduction of time-triggered concepts. Time-Triggered Ethernet (TTE) network supports real-time applications of mixed safety by providing three traffic classes, including Time-Triggered (TT) traffic, which has complete time certainty, Rate-Constrained (RC) traffic, which has bounded end-to-end delay, and the Best-Effort (BE) traffic. How to realize the tight analysis of real-time performance of RC traffic under time-triggered mechanism is still an open problem that determines the smooth application of TTE network. Under the assumption of First Input First Output (FIFO) service, this paper introduces the analysis method of "pay bursts only once" principle into TTE network to observe the influence of this principle on the performance analysis of time-triggered network. Different from Avionics Full-Duplex Switched Ethernet (AFDX), TT traffic with higher priority will have a key impact on the delay analysis of RC traffic, resulting in the complexity of "pay bursts only once" principle analysis. In this paper, the arrival curve model of aggregated TT traffic in the timely blocking mode is established, and the end-to-end service curve model of single RC traffic is obtained. Based on this model, the Worst-Case end-to-end Delay (WCD) evaluation of RC traffic is realized. Compared with those in the existing studies, this method gives a tighter upper bound of the WCD for RC traffic, which is helpful to improve the tightness of TTE network performance evaluation. Through the comparative analysis of A380 topology networking cases, compared with the traditional method, the proposed method reduces the average delay of RC traffic by 12.05%.
[1] |
Aerospace. Time-triggered Ethernet: SAE AS6802[S]. [S. l. ]: SAE International, 2011: 8-21.
|
[2] |
KOPETZ H, ADEMAJ A, GRILLINGER P, et al. The time triggered Ethernet (TTE) design[C]//8th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing. Piscataway: IEEE Press, 2005: 22-33.
|
[3] |
IEEE. IEEE standard for Ethernet: IEEE 802.3[S]. [S. l. ]: LAN/MAN Standards Committee, 2012: 17-26.
|
[4] |
LEE Y H, RACHLIN E, SCANDURA P A. Safety and certification approaches for Ethernet-based aviation databuses: DOT/FAA/AR-05/52[R]. [S. l. ]: Federal Aviation Administration, 2005.
|
[5] |
ARINC. Aircraft data network, Part 7, Avionics full-duplex switched Ethernet network: ARINC 664P7[S]. [S. l. ]: Aeronautical Radio INC, 2009: 9-18.
|
[6] |
STEINER W, BAUER G, HALL B, et al. TTEthernet dataflow concept[C]//8th IEEE International Symposium on Network Computing and Applications. Piscataway: IEEE Press, 2009: 319-322.
|
[7] |
STEINBACH T, LIM H T, KORF F, et al. Tomorrow's in-car interconnect A competitive evaluation of IEEE 802.1 AVB and time-triggered Ethernet (AS6802)[C]//2012 IEEE Vehicular Technology Conference (VTC Fall). Piscataway: IEEE Press, 2012: 1-5.
|
[8] |
SUEN J, KEGLEY R, PRESTON J. Affordable avionic networks with Gigabit Ethernet assessing the suitability of commercial components for airborne use[C]//2013 Proceedings of IEEE Southeastcon. Piscataway: IEEE Press, 2013: 1-6.
|
[9] |
TǍMŞA S D, POP P, STEINER W. Design optimization of TTEthernet-based distributed real-time systems[J]. Real-Time Systems, 2015, 51(1): 1-35. doi: 10.1007/s11241-014-9214-8
|
[10] |
MAUCLAIR C, DURRIEU G. Analysis of real-time networks with Monte Carlo methods[J]. Progress in Flight Dynamics, Guidance, Navigation, Control, Fault Detection, and Avionics, 2013, 6: 501-514.
|
[11] |
FRANCES F, FRABOUL C, GRIEU J. Using network calculus to optimize the AFDX network[J]. IEEE Transactions on Medical Imaging, 2006, 25(10): 1319-1328. doi: 10.1109/TMI.2006.880670
|
[12] |
BAUER H, SCHARBARG J L, FRABOUL C. Improving the worst-case delay analysis of an AFDX network using an optimized trajectory approach[J]. IEEE Transactions on Industrial Informatics, 2010, 6(4): 521-533. doi: 10.1109/TII.2010.2055877
|
[13] |
LI X T, SCHARBARG J, FRABOUL C. Improving end-to-end delay upper bounds on an AFDX network by integrating offsets in worst-case analysis[C]//IEEE Conference on Emerging Technologies and Factory Automation. Piscataway: IEEE Press, 2010: 1-8.
|
[14] |
SCHARBARG J L, RIDOUARD F, FRABOUL C. A probabilistic analysis of end-to-end delays on an AFDX avionic network[J]. IEEE Transactions on Industrial Informatics, 2009, 5(1): 38-49. doi: 10.1109/TII.2009.2016085
|
[15] |
ADNAN M, SCHARBARG J L, ERMONT J, et al. Model for worst case delay analysis of an AFDX network using timed automata[C]//IEEE Conference on Emerging Technologies and Factory Automation. Piscataway: IEEE Press, 2010: 1-4.
|
[16] |
STEINER W. Synthesis of static communication schedules for mixed-criticality systems[C]//14th IEEE International Symposium on Object/Component/Service-Oriented Real-time Distributed Computing Workshops. Piscataway: IEEE Press, 2011: 11-18.
|
[17] |
TAMAS S D, POP P, STEINER W. Timing analysis of rate-constrained traffic for the TTEthernet communication protocol[C]//18th International Symposium on Real-Time Distributed Computing. Piscataway: IEEE Press, 2015: 119-126.
|
[18] |
ZHAO L X, XIONG H G, ZHENG Z, et al. Improving worst case latency analysis for rate-constrained traffic in the time-triggered Ethernet network[J]. IEEE Communications Letters, 2014, 18(11): 1927-1930. doi: 10.1109/LCOMM.2014.2358233
|
[19] |
ZHAO L, POP P, LI Q J, et al. Timing analysis of rate-constrained traffic in TTEthernet using network calculus[J]. Real-Time Systems, 2017, 53(2): 254-287. doi: 10.1007/s11241-016-9265-0
|
[20] |
何锋. 机载网络技术基础[M]. 北京: 国防工业出版社, 2018.
HE F. Fundamentals of airborne network[M]. Beijing: National Defense Industry Press, 2018(in Chinese).
|
[21] |
STEINER W, DUTERTRE B. SMT-based formal verification of a TTEthernet synchronization function: In formal methods for industrial critical systems[M]. Berlin: Springer, 2010.
|
[22] |
FIDLER M. Extending the network calculus pay bursts only once principle to aggregate scheduling[C]//2nd International Workshop on Quality of Service in Multiservice IP Networks. Berlin: Springer, 2003: 19-34.
|
[23] |
LENZINI L, MARTORINI L, MINGOZZI E, et al. Tight end-to-end per-flow delay bounds in FIFO multiplexing sink-tree networks[J]. Performance Evaluation, 2006, 63(9-10): 956-987. doi: 10.1016/j.peva.2005.10.003
|
[24] |
BOYER M, FRABOUL C. Tightening end to end delay upper bound for AFDX network calculus with rate latency FIFO servers using network calculus[C]//IEEE International Workshop on Factory Communication Systems. Piscataway: IEEE Press, 2008: 11-20.
|
[25] |
CRUZ R L. A calculus for network delay, Part Ⅰ, Network elements in isolation[J]. IEEE Transactions on Information Theory, 1991, 37(1): 114-131. doi: 10.1109/18.61109
|
[26] |
LE B J, THIRAN P. Network calculus: A theory of deterministic queuing systems for the internet[M]. Berlin: Springer, 2001.
|
[1] | LI Yanhua, YANG Jie, ZHOU Jin, GE Jiaxin. Research on flight schedule optimization considering passengers' transit duration and transit service selection preference[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0900 |
[2] | BAI He, LI Yu, HAO Ming, XU Tingting. Graph neural network recommendation algorithm fused with dual-channel attention and time encoding[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0795 |
[3] | JIN B,LI R,WANG D,et al. Service performance assessment method of single frequency SBAS[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3062-3073 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0785. |
[4] | NIE Li, LI Chenliang, LIU Wangkui, SHEN Haidong, LIU Yanbin, CHEN Jinbao. Adaptive neural network based fixed-time command-filtered control for quadrotor unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0403 |
[5] | WAN Hongfa, LI Shanshan, LI Xinxing, TAN Xuli, PEI Xianyong. Analysis of observable degree of gravity aided inertial navigation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0308 |
[6] | ZHANG Z B,JING S Z,YUAN S P,et al. Robust analysis of hydrodynamic performance under variable rotation speeds[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1219-1228 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0480. |
[7] | LIU H Y,MA Z Q,YE Y F,et al. Smart contracts-as-a-service with on-chain and off-chain collaboration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3262-3273 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0784. |
[8] | GUO Hongwei, ZHU Ce, CHEN Junjie, LUO Lei. CTU-Level Optimization Algorithm for VVC Low-Delay Hierarchical Coding[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0453 |
[9] | YANG S C,CUI H G,ZHOU S D,et al. Real-time performance/security guarantee technology of vehicle control operating system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2051-2065 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0594. |
[10] | XIONG F,LI Q,LI J,et al. Time-triggered traffic scheduling-oriented virtual network embedding method[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1982-1990 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0511. |
[11] | ZHOU Zi-yan, LI Qiao, SHI Qi-dong. A heuristic constraint conversion scheduling method for time-triggered flows in TSN[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0585 |
[12] | JI Na, LIU Juan, WANG Haoran, GAO Rui, LU Yonglai, LI Fanzhu. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of the rubber bearing for heavy trucks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0263 |
[13] | ZHU Qi-tao, LI Hong-shuang. A mixed reliability analysis method based on direct probability integral[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0498 |
[14] | SUN Ren-hui, LIU Hao, DENG Kai-lian, YAN Shuai. Window-adaptive reconstruction for low-delay video compressive sensing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0333 |
[15] | ZANG G J,LI Q,WANG T,et al. Stacking scheduling method for time-triggered messages in off-chip network[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1838-1846 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0553. |
[16] | MA Ji, LI Rui-ying, ZHANG Qing-yuan, KANG Rui. Research on network time reliability evaluation method based on uncertainty theory[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0191 |
[17] | PENG Yating, WEN Xiangxi, WU Minggong, YANG Zhiwei, WANG Nan. Complex network-based air traffic complexity analysis in TBO[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0231 |
[18] | JIANG Ting-wei, TANG Cheng-pan, HU Xiao-gong, ZHOU Shan-shi, CAO Yue-ling. A Method for Regional Real-Time Satellite Clock Estimation Considering Group Delay Variation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0615 |
[19] | LI J,LI Q,ZUO Y J,et al. Real-time performance analysis on Terahertz interconnection with timed token protocol in avionics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):932-942 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0317. |
[20] | LI Guoliang, LI Qiao, XU Yajun, XIONG Huagang. A DDQN-based mixed-criticality messages scheduling method for network-on-chip[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1233-1241. doi: 10.13700/j.bh.1001-5965.2021.0006 |