Volume 47 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
MAO Jian, LIU Taikang, LIU Peiguoet al. An electromagnetic information leakage detection method using deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2200-2207. doi: 10.13700/j.bh.1001-5965.2020.0420(in Chinese)
Citation: MAO Jian, LIU Taikang, LIU Peiguoet al. An electromagnetic information leakage detection method using deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2200-2207. doi: 10.13700/j.bh.1001-5965.2020.0420(in Chinese)

An electromagnetic information leakage detection method using deep learning

doi: 10.13700/j.bh.1001-5965.2020.0420
Funds:

National Natural Science Foundation of China 61672335

More Information
  • Corresponding author: MAO Jian, E-mail: maojian@jmu.edu.cn
  • Received Date: 12 Aug 2020
  • Accepted Date: 08 Jan 2021
  • Publish Date: 20 Nov 2021
  • Electronic information equipment will emit electromagnetic wave unintentionally, which contains useful information. It will lead to the electromagnetic information leakage, thus threatening the information security. The traditional electromagnetic information leakage detection methods are difficult to extract useful information from uncertain electromagnetic leakage signals in complex environments. Aimed at the problem of electromagnetic information security, the electromagnetic information leakage detection is studied. A detection method based on deep learning is proposed. The method designs a one-dimensional convolutional neural network suitable for electromagnetic signals, and combines an improved gradient-weighted class activation mapping algorithm. It can locate and extract the electromagnetic leakage information characteristics intelligently under the condition of unknown the characteristics through deep learning so as to solve the problem of extracting electromagnetic leakage information in complex environments. The effectiveness of the proposed method is verified by experiments and simulation.

     

  • loading
  • [1]
    刘泰康, 李咏梅, 等. 电磁信息泄漏及防护技术[M]. 北京: 国防工业出版社, 2015: 11-125.

    LIU T K, LI Y M, et al. Electromagnetic information leakage and countermeasure technique[M]. Beijing: National Defense Industry Press, 2015: 11-125(in Chinese).
    [2]
    VAN ECK W. Electromagnetic radiation from video display units: An eavesdropping risk [J]. Computers and Security, 1985, 4(4): 269-286. doi: 10.1016/0167-4048(85)90046-X
    [3]
    KUHN M G. Eavesdropping attacks on computer displays[C]//Proceedings of Information Security Summit, 2006: 1-10.
    [4]
    KUHN M G. Optical time-domain eavesdropping risks of CRT displays[C]//Proceedings of IEEE Symposium on Security & Privacy. Piscataway: IEEE Press, 2002: 3-18.
    [5]
    KUHN M G. Security limits for compromising emanations[C]//International Workshop on Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2005, 3659: 265-279.
    [6]
    KUHN M G. Compromising emanations of LCD TV sets[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 564-570. doi: 10.1109/TEMC.2013.2252353
    [7]
    KUHN M G. Electromagnetic eavesdropping risks of flat-panel displays: Lecture notes in computer science[C]//Proceedings of the 4th International Conference on Privacy Enhancing Technologies. Berlin: Springer, 2005, 3424: 88-107.
    [8]
    SEKIGUCHI H. Information leakage of input operation on touch screen monitors caused by electromagnetic noise[C]//Proceedings of IEEE International Symposium on Electromagnetic Compatibility. Piscataway: IEEE Press, 2010: 127-131.
    [9]
    SHI J, YONGACOGLU A, SUN D, et al. A novel wavelet based independent component analysis method for pre-processing computer video leakage signal[C]//Proceedings of IEEE Symposium on Computers and Communications. Piscataway: IEEE Press, 2016: 334-339.
    [10]
    SUN D, SHI J, WEI D, et al. A low-cost and efficient method of determining the best frequency band for video leaking signal reconstruction[C]//Proceedings of International Conference on Systems and Informatics. Piscataway: IEEE Press, 2015: 624-628.
    [11]
    TOSAKA T, YAMANAKA Y, FUKUNAGA K. Method for determining whether or not information is contained in electromagnetic disturbance radiated from a PC display[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(2): 318-324. doi: 10.1109/TEMC.2010.2103562
    [12]
    MAO J, LIU P, LIU J, et al. Method for detecting electromagnetic information leakage from computer monitor[J]. Control and Intelligent Systems, 2017, 45(1): 37-42. http://smartsearch.nstl.gov.cn/paper_detail.html?id=1ac05d2eff92b309a45c8445b1efc977
    [13]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Annual Conference on Neural Information Processing Systems, 2012: 1097-1105.
    [14]
    CHO S I, KANG S. Gradient prior-aided CNN denoiser with separable convolution-based optimization of feature dimension[J]. IEEE Transactions on Multimedia, 2019, 21(2): 484-493. doi: 10.1109/TMM.2018.2859791
    [15]
    DENG Z, SUN H, ZHOU S, et al. Multi-scale object detection in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 3-22. doi: 10.1016/j.isprsjprs.2018.04.003
    [16]
    CHEN S, XU L, MA L, et al. Convolutional neural network for classification of solar radio spectrum[C]//Proceedings of IEEE International Conference on Multimedia and Expo Workshops. Piscataway: IEEE Press, 2017: 198-201.
    [17]
    ZHANG X, LIN T, XU J, et al. DeepSpectra: An end-to-end deep learning approach for quantitative spectral analysis[J]. Analytica Chimica Acta, 2019, 1058: 48-57. doi: 10.1016/j.aca.2019.01.002
    [18]
    SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 618-626.
    [19]
    CAO J, PANG Y, LI X, et al. Randomly translational activation inspired by the input distributions of ReLU[J]. Neuro Computing, 2018, 275: 859-868. http://www.onacademic.com/detail/journal_1000040110605810_a66d.html
    [20]
    SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
    [21]
    VESA. VESA and industry standards and guidelines for computer display monitor timing (DMT)[S]. San Jose: VESA, 2013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(832) PDF downloads(163) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return