Volume 47 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
ZHANG Zequn, LUO Xiang, CAO Nanet al. Steady-state experiment and numerical simulation on flow and heat transfer of a rotating cavity with axial flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2369-2377. doi: 10.13700/j.bh.1001-5965.2020.0426(in Chinese)
Citation: ZHANG Zequn, LUO Xiang, CAO Nanet al. Steady-state experiment and numerical simulation on flow and heat transfer of a rotating cavity with axial flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2369-2377. doi: 10.13700/j.bh.1001-5965.2020.0426(in Chinese)

Steady-state experiment and numerical simulation on flow and heat transfer of a rotating cavity with axial flow

doi: 10.13700/j.bh.1001-5965.2020.0426
Funds:

National Science and Technology Major Project 2017-Ⅲ-0011-0037

National Natural Science Foundation of China 61890923

More Information
  • Corresponding author: LUO Xiang, E-mail: xiang.luo@buaa.edu.cn
  • Received Date: 12 Aug 2020
  • Accepted Date: 28 Aug 2020
  • Publish Date: 20 Nov 2021
  • The steady-state experiment and numerical simulation were carried out to investigate the flow structure and heat transfer characteristics in the rotating cavity with axial flow. By changing the axial flow coefficient, rotating Reynolds number, etc., the radial distribution of temperature and Nusselt number on both sides of the disk and the inner side of the disk cone under different working conditions was explored. The results show that: the radial distribution of temperature on both sides of the disk is concave, and the heat transfer intensity on the upwind side of the disk is generally higher than that on the leeward side. The cone disk conducts heat conduction to the disks on both ends, and the radial distribution of the wall surface temperature is high in the middle and low on both sides. With the increase of the axial flow coefficient, the gas convection inside the disk cavity was intensified, the radial arm and vortex pair became explicit, and the heat transfer effect on the surface of the rotating disk and the cone disk was enhanced. The flow heat transfer characteristics in the cavity of the rotating disk are influenced by forced convection and Rayleigh-Benard like convection.

     

  • loading
  • [1]
    OWEN J M, PINCOMBE J R. Vortex breakdown in a rotating cylindrical cavity[J]. Journal of Fluid Mechanics, 1979, 90(1): 109-127. doi: 10.1017/S0022112079002093
    [2]
    FARTHING P R, LONG G A, OWEN J M, et al. Rotating cavity with axial throughflow of cooling air: Flow structure[J]. Journal of Turbomachinery, 1992, 114(1): 237-246. doi: 10.1115/1.2927991
    [3]
    ALEXIOU A. Flow and heat transfer in gas turbine h. p. compressor internal air systems[D]. Sussex: University of Sussex, 2000.
    [4]
    BOHN D E, DEUTSCH G N, SIMON B, et al. Flow visualisation in a rotating cavity with axial throughflow[C]//ASME Turbo Expo: Power for Land, Sea, & Air. New York: ASME, 2000.
    [5]
    田淑青, 陶智, 丁水汀, 等. 轴向通流旋转盘腔内流动不稳定性研究[J]. 北京航空航天大学学报, 2005, 31(4): 393-396. doi: 10.3969/j.issn.1001-5965.2005.04.005

    TIAN S Q, TAO Z, DING S T, et al. Investigation of flow instability in rotating cavity with axial throughflow of cooling air[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(4): 393-396(in Chinese). doi: 10.3969/j.issn.1001-5965.2005.04.005
    [6]
    田淑青, 陶智, 丁水汀, 等. 轴向通流旋转盘腔内换热的数值模拟[J]. 航空动力学报, 2005, 20(4): 656-661. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200504023.htm

    TIAN S Q, TAO Z, DING S T, et al. Numerical investigation on heat transfer in a rotating cavity with axial throughflow of cooling air[J]. Journal of Aerospace Power, 2005, 20(4): 656-661(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200504023.htm
    [7]
    田淑青, 陶智, 丁水汀, 等. 轴向通流旋转盘腔内类Rayleigh-Benard对流稳定性研究[J]. 热科学与技术, 2003, 2(3): 260-265. doi: 10.3969/j.issn.1671-8097.2003.03.015

    TIAN S Q, TAO Z, DING S T, et al. Investigation of Rayleigh-Benard-like convection stabilities in rotating cavity with axial throughflow of cooling air[J]. Journal of Thermal Science and Technology, 2003, 2(3): 260-265(in Chinese). doi: 10.3969/j.issn.1671-8097.2003.03.015
    [8]
    PITZ D B, CHEW J W, MARXEN O. Effect of an axial throughflow on buoyancy-induced flow in a rotating cavity[J]. International Journal of Heat and Fluid Flow, 2019, 80: 108468. doi: 10.1016/j.ijheatfluidflow.2019.108468
    [9]
    FARTHING P R, LONG C A, OWEN J M, et al. Rotating cavity with axial throughflow of cooling air: Heat transfer[J]. Journal of Turbomachinery, 1992, 114(1): 229-236. doi: 10.1115/1.2927990
    [10]
    OWEN J M, POWELL J. Buoyancy induced flow in a heated rotating cavity[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(1): 128-134. doi: 10.1115/1.2032451
    [11]
    OWEN J M, BILIMORIA E D. Heat transfer in rotating cylindrical cavities[J]. Journal of Mechanical Engineering Science, 1977, 19(4): 175-187. doi: 10.1243/JMES_JOUR_1977_019_038_02
    [12]
    LONG C A, TUCKER P G. Shroud heat transfer measurements from a rotating cavity with an axial throughflow of air[J]. Journal of Turbomachinery, 1994, 116(3): 525-534. doi: 10.1115/1.2929441
    [13]
    TUCKER P G, LONG C A. Fluid temperature distributions in a rotating cavity with an axial throughflow[J]. International Communications in Heat and Mass Transfer, 1998, 25(4): 511-520 doi: 10.1016/S0735-1933(98)00038-4
    [14]
    OWEN J M, TANG H. Theoretical model of Buoyancy-induced flow in rotating cavities[J]. Journal of Turbomachinery, 2015, 137(11): 111005. doi: 10.1115/1.4031353
    [15]
    徐国强, 张笙, 罗翔, 等. 高位垂直进气径向出流旋转盘腔换热的实验研究[J]. 航空动力学报, 2006, 21(5): 820-823. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200605006.htm

    XU G Q, ZHANG S, LUO X, et al. Experimental investigation on heat transfer in shrouded rotating disk with high-positioned air inflow[J]. Journal of Aerospace Power, 2006, 21(5): 820-823(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200605006.htm
    [16]
    曹楠, 窦志伟, 罗翔, 等. 轴向通流旋转盘腔换热特性[J]. 航空动力学报, 2018, 33(5): 1178-1185. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201805020.htm

    CAO N, DOU Z W, LUO X, et al. Heat transfer characteristics of a rotating cavity with axial throughflow of cooling air[J]. Journal of Aerospace Power, 2018, 33(5): 1178-1185(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201805020.htm
    [17]
    ALEXIOU A, HILLS N J, LONG C A, et al. Heat transfer in high-pressure compressor gas turbine internal air systems: A rotating disc-cone cavity with axial throughflow[J]. Experimental Heat Transfer, 2000, 13(4): 299-328.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(487) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return