Volume 47 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
ZHANG Yeming, LI Dongyuan, XU Weiqing, et al. Energy consumption of flexible gripper during contraction and expansion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2208-2214. doi: 10.13700/j.bh.1001-5965.2020.0430(in Chinese)
Citation: ZHANG Yeming, LI Dongyuan, XU Weiqing, et al. Energy consumption of flexible gripper during contraction and expansion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2208-2214. doi: 10.13700/j.bh.1001-5965.2020.0430(in Chinese)

Energy consumption of flexible gripper during contraction and expansion

doi: 10.13700/j.bh.1001-5965.2020.0430
Funds:

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems GZKF-202016

Outstanding Young Scientists Program in Beijing Universities BJJWZYJH01201910006021

Key Science and Technology Program of Henan, China 202102210081

More Information
  • Corresponding author: XU Weiqing, E-mail: weiqing.xu@buaa.edu.cn
  • Received Date: 13 Aug 2020
  • Accepted Date: 28 Dec 2020
  • Publish Date: 20 Nov 2021
  • The online measurement system of gas pressure, flow and other parameters was established to realize the regulation and control of the measurement and control system through the data acquisition system of industrial personal computer, combined with sensor technology, signal processing technology, etc. The pressure and flow rate of the flexible gripper under different initial pressures during contraction and expansion were collected respectively, then the pressure flow diagram of the flexible gripper was drawn by SigmaPlot, and the flow pressure output characteristics of the flexible gripper were analyzed. Finally, the pneumatic power was calculated to study the energy consumption law. The results show that through the contraction experiment of the flexible gripper, the difference between the given initial pressure and the pressure generated by the flexible gripper is small, and the loss of pneumatic power is relatively small. In the expansion experiment of the flexible gripper, because the initial pressure provided is indirectly acting on the flexible gripper through the vacuum generator, the difference between the pressure provided and the pressure generated by the flexible gripper is big. Larger initial pressure needs to be provided in order to make the flexible gripper reach the specified pressure. The pneumatic power loss of flexible gripper is lower during contraction than during expansion.

     

  • loading
  • [1]
    曹玉君, 尚建忠, 梁科山, 等. 软体机器人研究现状综述[J]. 机械工程学报, 2012, 48(3): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201203005.htm

    CAO Y J, SHANG J Z, LIANG K S, et al. Review of soft-bodied robots[J]. Journal of Mechanical Engineering, 2012, 48(3): 25-33(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201203005.htm
    [2]
    张进华, 王韬, 洪军, 等. 软体机械手研究综述[J]. 机械工程学报, 2017, 53(13): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201713003.htm

    ZHANG J H, WANG T, HONG J, et al. Review of soft-bodied manipulator[J]. Journal of Mechanical Engineering, 2017, 53(13): 19-28(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201713003.htm
    [3]
    张晗. 气动软体机械手抓取性能研究[D]. 西安: 西安理工大学, 2019: 1-8.

    ZHANG H. Research on grasping performance of pneumatic soft gripper[D]. Xi'an: Xi'an University of Technology, 2019: 1-8(in Chinese).
    [4]
    韩鹰. 典型气动柔性执行器的设计建模与应用[D]. 哈尔滨: 哈尔滨工业大学, 2018: 5-11.

    HAN Y. Research on design modelling and application of typical pneumatic soft actuators[D]. Harbin: Harbin Institute of Technology, 2018: 5-11(in Chinese).
    [5]
    钟佳炜, 刘忠, 霍佳波, 等. 比例压力流量阀控缸系统的建模与输出特性研究[J]. 机械制造与自动化, 2019, 48(4): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201904024.htm

    ZHONG J W, LIU Z, HUO J B, et al. Research on modeling and output characteristics of control cylinder system for proportional pressure flow valve[J]. Machine Building & Automation, 2019, 48(4): 89-92(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201904024.htm
    [6]
    杨志春, 郁林聪. 单柱塞泵流量压力输出特性研究[J]. 液压与气动, 2019(10): 135-140. doi: 10.11832/j.issn.1000-4858.2019.10.023

    YANG Z C, YU L C. Study on flow and pressure characteristics of single piston pump[J]. Chinese Hydraulics & Pneumatics, 2019(10): 135-140(in Chinese). doi: 10.11832/j.issn.1000-4858.2019.10.023
    [7]
    蔡茂林, 石岩. 压缩空气系统节能关键技术体系及其应用[J]. 液压气动与密封, 2012, 32(12): 63-66. doi: 10.3969/j.issn.1008-0813.2012.12.021

    CAI M L, SHI Y. Energy-saving key technologies system of compressed air system and its applications[J]. Hydraulics Pneumatics & Seals, 2012, 32(12): 63-66(in Chinese). doi: 10.3969/j.issn.1008-0813.2012.12.021
    [8]
    刘永, 谷立臣, 杨彬, 等. 液压系统流量、压力闭环控制实验研究[J]. 机床与液压, 2017, 45(7): 23-25. doi: 10.3969/j.issn.1001-3881.2017.07.006

    LIU Y, GU L C, YANG B, et al. Experimental study on closed loop control of flow and pressure of hydraulic system[J]. Machine Tool & Hydraulics, 2017, 45(7): 23-25(in Chinese). doi: 10.3969/j.issn.1001-3881.2017.07.006
    [9]
    张晋涛, 杜玉红, 陈小龙, 等. 气体流量压力测试系统[J]. 机电工程技术, 2011, 40(10): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKF201110025.htm

    ZHANG J T, DU Y H, CHEN X L, et al. Gas flow and pressure test system[J]. Electromechanical Engineering Technology, 2011, 40(10): 83-86(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXKF201110025.htm
    [10]
    徐昆, 卢苇, 王博韬, 等. 气体在热流逸效应作用下的压力与流量特性[J]. 高校化学工程学报, 2017, 31(6): 1285-1292. doi: 10.3969/j.issn.1003-9015.2017.06.005

    XU K, LU W, WANG B T, et al. Pressure and mass flow characteristics of gases under thermal transpiration effects[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(6): 1285-1292(in Chinese). doi: 10.3969/j.issn.1003-9015.2017.06.005
    [11]
    李珂. 摆动气缸位置伺服控制系统研究[D]. 焦作: 河南理工大学, 2019: 10-14.

    LI K. Research on pneumatic rotary actuator position servo control system[D]. Jiaozuo: Henan Polytechnic University, 2019: 10-14(in Chinese).
    [12]
    ZHANG Y M, YUE H W, LI K, et al. Analysis of power matching on energy saving of pneumatic rotary actuator servo-control system[J]. Chinese Journal of Mechanical Engineering, 2020(2): 87-99. http://www.cqvip.com/QK/85891X/202002/7101768404.html
    [13]
    ZHANG Y M, LI K, WANG G, et al. Nonlinear model establishment and experimental verification of a pneumatic rotary actuator position servo system[J]. Energies, 2019, 12(6): 1096. doi: 10.3390/en12061096
    [14]
    CAI M L. Modern pneumatic technology theory and practice. Chapter 5: The characteristics of cylinder drive systems[J]. Hydraulics Pneumatics and Seals, 2007, 27(6): 55-58.
    [15]
    蔡茂林, 香川利春. 气动系统的能量消耗评价体系及能量损失分析[J]. 机械工程学报, 2007, 43(9): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200709017.htm

    CAI M L, KAGAWA T. Energy consumption assessment and energy loss analysis of pneumatic system[J]. Journal of Mechanical Engineering, 2007, 43(9): 69-74(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200709017.htm
    [16]
    ZHANG Y M, CAI M L. Overall life cycle comprehensive assessment of pneumatic and electric actuator[J]. Chinese Journal of Mechanical Engineering, 2014, 27(3): 584-594. doi: 10.3901/CJME.2014.03.584
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(425) PDF downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return