ZHANG Yongqiang, XU Zongchang, HU Kaikai, et al. Joint optimization of maintenance time and carrying spare parts for k-out-of-N system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2189-2197. doi: 10.13700/j.bh.1001-5965.2015.0622(in Chinese)
Citation: LI Xinyu, LIU Huoxing. Conjugate heat transfer simulation and mechanism of air-cooled turbine guide vanes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2378-2386. doi: 10.13700/j.bh.1001-5965.2020.0435(in Chinese)

Conjugate heat transfer simulation and mechanism of air-cooled turbine guide vanes

doi: 10.13700/j.bh.1001-5965.2020.0435
More Information
  • Corresponding author: LIU Huoxing, E-mail: liuhuoxing@buaa.edu.cn
  • Received Date: 17 Aug 2020
  • Accepted Date: 18 Sep 2020
  • Publish Date: 20 Nov 2021
  • According to the multi-field coupling characteristics of air-cooled turbine blades, numerical simulation of high-pressure turbine guide vanes with different air-cooling structures is carried out by the flow-heat coupling method. In internal cooling turbine blade example, by comparing the experimental data to select a higher-accuracy Conjugate Heat Transfer (CHT) calculation scheme, the multi-field characteristics and coupling mechanism of the internal cooling guide vane are analyzed. On this basis, the turbine guide vanes with film cooling holes and internal cooling channels are the research object, the interaction between cooling jet and main stream are focused on, and the fluid thermal coupling relationship in near wall boundary layer and related questions such as the factors affecting the air cooling efficiency are discussed. The results show that the use of flow-heat coupling calculation method and a suitable turbulent transition model is conducive to improving the simulation accuracy. Flow field and temperature field of the air-cooled guide vane are closely coupled, and the flow heat-transfer characteristics affect each other. In case of low speed rate, increased cool air flow can improve the cooling efficiency of the film, and if the flow of cold air is increased to a certain value, the increase in the cold flow will cause a poor upstream cooling effect behind the air-cooled hole and a better downstream cooling effect. High-speed cooling interacts with main stream, which will produce complex flow structures such as kidney-shaped vortices and horseshoe vortices that have certain influences on temperature distribution.

     

  • [1]
    邹正平, 王松涛, 刘火星, 等. 航空燃气轮机涡轮气体动力学: 流动机理及气动设计[M]. 上海: 上海交通大学出版社, 2014: 101-102.

    ZOU Z P, WANG S T, LIU H X, et al. Turbine gas dynamics of air gas turbine: Flow mechanism and pneumatic design[M]. Shanghai: Shanghai Jiao Tong University Press, 2014: 101-102(in Chinese).
    [2]
    安玉戈, 刘火星, 邹正平. 涡轮端区密封结构泄漏流动气热耦合研究[J]. 工程热物理学报, 2015, 36(12): 2579-2583.

    AN Y G, LIU H X, ZOU Z P. Aerothermal analysis of a turbine with endwall leakage flow[J]. Journal of Engineering Thermophysics, 2015, 36(12): 2579-2583(in Chinese).
    [3]
    张红军. 多孔/流体/固体多区域流热耦合数值模拟方法以及耦合机制研究[D]. 北京: 北京航空航天大学, 2013: 26-29.

    ZHANG H J. Investigation of numerical conjugate heat transfer method and coupling mechanism for hybrid porous/fluid/solid domains[D]. Beijing: Beihang University, 2013: 26-29(in Chinese).
    [4]
    HEIDMANN J D, KASSAB A J, DIVO E A, et al. Conjugate heat transfer effects on a realistic film-cooled turbine vane: GT2003-38553[R]. New York: ASME, 2003.
    [5]
    BOHN D, BONHOFF B, SCHÖNENBORN H. Combined aerodynamic and thermal analysis of a turbine nozzle guide vane: IGTC-paper-108[R]. : IGTC, 1995.
    [6]
    李宇. 三维流/热耦合数值模拟程序的发展及方法研究[D]. 北京: 北京航空航天大学, 2011: 33-36.

    LI Y. A 3-D conjugate heat transfer solver and methodology research[D]. Beijing: Beihang University, 2011: 33-36(in Chinese).
    [7]
    苏欣荣, 袁新. 并行计算环境中的高效气热耦合方法[J]. 工程热物理学报, 2017, 38(1): 49-53.

    SU X R, YUAN X. Efficient gas-heat coupling method in parallel computing environment[J]. Journal of Engineering Thermophysics, 2017, 38(1): 49-53(in Chinese).
    [8]
    EIFEL M, CASPARY V, HONEN H, et al. Experimental and numerical analysis of gas turbine blades with different internal cooling geometries[J]. Journal of Turbomachinery, 2011, 133(1): 11018-11019. doi: 10.1115/1.4000541
    [9]
    MAZUR Z, HERNANDEZ-ROSSETTE A, GARCIA-ILLESCAS R, et al. Analysis of conjugate heat transfer of a gas turbine first stage nozzle[J]. Applied Thermal Engineering, 2006, 26(16): 1796-1806. doi: 10.1016/j.applthermaleng.2006.01.025
    [10]
    董平. 航空发动机气冷涡轮叶片的气热耦合数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 10-11.

    DONG P. Research on conjugate heat transfer simulation of aero turbine engine air-cooled vane[D]. Harbin: Harbin Institute of Technology, 2009: 10-11(in Chinese).
    [11]
    HYLTON L D, MIHELC M S, TURNER E R, et al. Analytical and experiment evaluation of the heat transfer distribution over the surface of turbine vane: NASA-CR-168015[R]. Washington, D.C. : NASA, 1983.
    [12]
    LUO J, RAZINSKY E H. Conjugate heat transfer analysis of a cooled turbine vane using the V2F turbulence model: GT2006-91109[R]. New York: ASME, 2006.
    [13]
    尚修宇. 高压涡轮多学科耦合机理及分析方法研究[D]. 北京: 北京航空航天大学, 2019: 10-12.

    SHANG X Y. Research on the multidisciplinary coupling mechanism and analysis method of HP turbine[D]. Beijing: Beihang University, 2019: 10-12(in Chinese).
    [14]
    KAYS W M, CRAWFORD M E. Convective heat and mass transfer[M]. 3rd ed. New York: McGraw-Hill, 1993.
    [15]
    HISHIDA M, NAGANO Y, TAGAWA M. Transport processes of heat and momentum in the wall region//Proceedings of Eighth International Heat Transfer Conference, 1986: 925-930.
    [16]
    LIN Y, SPMG B, LI B, et al. Measured film cooling effectiveness of three multihole patterns[J]. Journal of Heat Transfer, 2006, 128(2): 192-197. doi: 10.1115/1.2137762
    [17]
    MARGASON R J. Fifty years of jet in cross flow researeh[C]//Proceedings of the AGARD Symposium on Computational and Experimental Assessment of Jets in Cross Flow, 1983: 41.
  • Relative Articles

    [1]LI Y J,LIU Q,LI W. Impeller fault diagnosis method and application based on digital twin flow field contour of centrifugal pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):193-201 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0997.
    [2]WANG Yanhong, BAI Haoran, DONG Ming, HUANG Shuailing. Numerical study on heat transfer of supercritical n-decane in internal-spiral regenerative cooling channels[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0717
    [3]FU Yangaoxiao, MEI Jie, DING Mingsong, CHEN Jianqiang, JIANG Tao, DONG Weizhong. Numerical simulation of jet interaction heating on reusable launch vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0053
    [4]CAO Hao, CHEN Yiou, ZHANG Runze. A BP decoding algorithm for polar codes based on task graph reconstruction[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0407
    [5]LIU Zengxu, YU Kaikai, FU Kexin, LIN Rou, XU Jinglei. Design and flow characteristics research of exhaust systems with wide altitude and speed ranges[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0781
    [6]YU Rui, WANG Xiaojun, HE Xiaoying, LI Biao. Simulation and analysis of ignition flow field in granular propellant gas generators[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0683
    [7]WANG Dequan, ZHAO Yuxuan, YUAN Xiangyue, WANG Qingchun, CHEN Zhongjia. Design and simulation of large composite material curing furnace based on flow field uniformity[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0370
    [8]ZHANG Xin-ze, LI Qin, WENG Yi-hui, YOU Yan-cheng. Numerical analysis and flow state prediction of double wedge steady/unsteady flow at different Ma、Re[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0758
    [9]LIU S S,LEI X R,SONG Z Y,et al. Influence of unloading groove opening of port plate of plunger pumps on transient flow field characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2919-2929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0713.
    [10]ZOU L,WU W N,LIU J,et al. Numerical simulation of flow around two tandem wavy conical cylinders at subcritical Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):706-715 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0285.
    [11]LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693.
    [12]MAO Junjie, QU Guoxin, GAO Zhenxun. Numerical investigation of heat and drag reduction by discrete microholes film in hypersonic flow[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0443
    [13]LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813.
    [14]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [15]XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494.
    [16]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [17]HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335.
    [18]ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790.
    [19]PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152.
    [20]WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
  • Cited by

    Periodical cited type(2)

    1. 李卓轩,沙云东,骆丽. 涡轮叶片气热耦合壁温及压力分布计算与分析. 沈阳航空航天大学学报. 2024(01): 1-8 .
    2. 宋洋,王威,耿瑞,罗磊,周海盟. 基于涡轮导叶复合结构设计平台的叶片强度分析技术. 汽轮机技术. 2023(02): 81-86 .

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)

    Article Metrics

    Article views(1114) PDF downloads(113) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return