Volume 47 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
ZHANG Lei, GUO Hong, XU Jinquanet al. Design of four-quadrant power hardware-in-the-loop brushless DC motor emulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2043-2057. doi: 10.13700/j.bh.1001-5965.2020.0441(in Chinese)
Citation: ZHANG Lei, GUO Hong, XU Jinquanet al. Design of four-quadrant power hardware-in-the-loop brushless DC motor emulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2043-2057. doi: 10.13700/j.bh.1001-5965.2020.0441(in Chinese)

Design of four-quadrant power hardware-in-the-loop brushless DC motor emulator

doi: 10.13700/j.bh.1001-5965.2020.0441
Funds:

National Natural Science Foundation of China 51707004

Aeronautical Science Foundation of China 2016ZC51025

the Fundamental Research Funds for the Central Universities YWF18BJY166

More Information
  • Corresponding author: XU Jinquan, E-mail: xujinquan@buaa.edu.cn
  • Received Date: 21 Aug 2020
  • Accepted Date: 09 Oct 2020
  • Publish Date: 20 Oct 2021
  • Since it is difficult, costly, and time-consuming to test the power electronic converter of Brushless DC Motor (BLDCM) in all operating conditions with a motor-load test bench, this paper proposes a four-quadrant Power Hardware-In-the-Loop (PHIL) BLDCM emulator, which submits a methods of sampling and calculation based on the different operating regions. it can replace the motor-load test bench in the performance test and the reliability test of the BLDCM controller under a two-phase conduction control mode. Meanwhile, the paper employs a piecewise method to optimize the sampling and model calculation processes of the emulator. This PHIL BLDCM emulator comprises a real-time simulator, a motor simulation converter, and a multi-stage bidirectional converter. The real-time simulator measures the output PWM voltages of the power electronic converter and calculates the behavior of the electric motor by the real-time calculation model. The motor simulation converter receives the calculated currents as the control instruction and generates the currents of the emulator. In the meantime, the multi-stage bidirectional converter maintains the energy balance between the input and output of the emulator and realizes the PHIL simulation to the BLDCM operating in different states. The experimental results show that the proposed PHIL BLDCM emulator has many benefits, such as high simulation precision, good real-time performance, and flexible operation, it can achieve the PHIL simulation to the real BLDCM and the mechanical-load in the test of the BLDCM controller.

     

  • loading
  • [1]
    匡晓霖, 徐金全, 黄春蓉, 等. 六相永磁同步电动机驱动控制方式[J]. 北京航空航天大学学报, 2019, 45(7): 1361-1369. doi: 10.13700/j.bh.1001-5965.2018.0695

    KUANG X L, XU J Q, HUANG C R, et al. Drive-control modes of six-phase PMSM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1361-1369(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0695
    [2]
    刘勇智, 李杰, 鄯成龙. 基于最优角度自适应TSF的SRM直接瞬时转矩控制[J]. 北京航空航天大学学报, 2019, 45(11): 2152-2159. doi: 10.13700/j.bh.1001-5965.2019.0101

    LIU Y Z, LI J, SHAN C L. Direct instantaneous torque control of switched reluctance motor based on optimal angle adaptive TSF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2152-2159(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0101
    [3]
    JACK A G, ATKINSON D J, SLATER H J. Real-time emulation for power equipment development. Part 1: Real-time simulation[J]. IEE Proceedings-Electric Power Applications, 1998, 145(2): 92-97. doi: 10.1049/ip-epa:19981753
    [4]
    SLATER H J, ATKINSON D J, JACK A G. Real-time emulation for power equipment development. Part 2: The virtual machine[J]. IEE Proceedings-Electric Power Applications, 1998, 145(3): 153-158. doi: 10.1049/ip-epa:19981849
    [5]
    DUFOUR C, LAPOINTE V, BELANGER J. Hardware-in-the-loop closed-loop control of virtual FPGA-coded permanent magnet synchronous motor drives using a rapidly prototyped controller[C]//International Power Electronics and Motion Control Conference. Piscataway: IEEE Press, 2008: 2152-2158.
    [6]
    SCHMITT A, RICHTER J, GOMMERINGER M, et al. A novel 100 kW power hardware-in-the-loop emulation test bench for permanent magnet synchronous machines with nonlinear magnetics[C]//International Conference on Power Electronics, Machines and Drives. Stevenage: IET, 2016: 1-6.
    [7]
    LENTIJO S, ARCO S D, MONTI A. Comparing the dynamic performances of power hardware-in-the-loop interfaces[J]. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1195-1207. doi: 10.1109/TIE.2009.2027246
    [8]
    MOJLISH S, ERDOGAN N, LEVINE D, et al. Review of hardware platforms for real-time simulation of electric machines[J]. IEEE Transactions on Transportation Electrification, 2017, 3(1): 130-146. doi: 10.1109/TTE.2017.2656141
    [9]
    RALPH M K, TILL B, JOACHIM H. Replacement of electrical (load) drives by a hardware-in-the-loop system[C]//International Aegean Conference on Electrical Machines and Power Electronics and Electro-motion, Joint Conference. Piscataway: IEEE Press, 2011: 17-25.
    [10]
    GAO J, SONG S, HUANG Y, et al. Implementation and test for the semi-physical real-time simulation of IPMSM based on 3-D inductance table[C]//IEEE Conference and Expo Transportation Electrification Asia-Pacific. Piscataway: IEEE Press, 2014: 1-5.
    [11]
    SARIKHANI A, MOHAMMED O A. HIL-based finite-element design optimization process for the computational prototyping of electric motor drives[C]//IEEE Power & Energy Society General Meeting. Piscataway: IEEE Press, 2013: 737-746.
    [12]
    TAVANA N R, DINAVAHI V. Real-time FPGA-based analytical space harmonic model of permanent magnet machines for hardware-in-the-loop simulation[J]. IEEE Transactions on Magnetics, 2015, 51(8): 1-9. https://ieeexplore.ieee.org/document/7061475
    [13]
    TAVANA N R, DINAVAHI V. Real-time nonlinear magnetic equivalent circuit model of induction machine on FPGA for hardware-in-the-loop simulation[J]. IEEE Transactions on Energy Conversion, 2016, 31(2): 520-530. doi: 10.1109/TEC.2015.2514099
    [14]
    KRAUSE P C, WASYNCZUK O, SUDHOFF S D, et al. Analysis of electric machinery and drive systems[M]. New York: Wiley-IEEE Press, 2013: 121-141.
    [15]
    YANG F, TAYLOR A R, BAI H, et al. Using d-q transformation to vary the switching frequency for interior permanent magnet synchronous motor drive systems[J]. IEEE Transactions on Transportation Electrification, 2015, 1(3): 277-286. doi: 10.1109/TTE.2015.2443788
    [16]
    LOK-FU P, VENKATA D. Real-time simulation of a wind energy system based on the doubly-fed induction generator[J]. IEEE Transactions on Power Systems, 2009, 24(3): 1301-1309. doi: 10.1109/TPWRS.2009.2021200
    [17]
    夏长亮. 无刷直流电动机控制系统[M]. 北京: 科学出版社, 2009: 31-56.

    XIA C L. Control system of brushless DC machine[M]. Beijing: Science Press, 2009: 31-56(in Chinese).
    [18]
    RAO Y S, MUKUL C. Real-time electrical load emulator using optimal feedback control technique[J]. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1217-1225. doi: 10.1109/TIE.2009.2037657
    [19]
    张崇巍, 张兴. PWM整流器及其控制[M]. 北京: 机械工业出版社, 2003: 154-186.

    ZHANG C W, ZHANG X. PWM rectifier and its control[M]. Beijing: China Machine Press, 2003: 154-186(in Chinese).
    [20]
    王雷. 能量回馈型交流电子负载变换器研究[D]. 南京: 南京航空航天大学, 2008: 16-22. https://wenku.baidu.com/view/e8b3b3333968011ca3009181.html?fr=xueshu

    WANG L. Study of AC electronic load converter with energy feedback[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 16-22(in Chinese). https://wenku.baidu.com/view/e8b3b3333968011ca3009181.html?fr=xueshu
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(4)

    Article Metrics

    Article views(513) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return