YANG Li-jun, WANG Wei, HU Ze-bao, et al. Study of Atomizing Characteristics of Two-Phase Flow Emulsification Water Mist Nozzles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(4): 413-416. (in Chinese)
Citation: WU Zhuoheng, YU Li, ZHAO Xiaoshun, et al. Effects of capsule wake on parachute working performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2552-2559. doi: 10.13700/j.bh.1001-5965.2020.0465(in Chinese)

Effects of capsule wake on parachute working performance

doi: 10.13700/j.bh.1001-5965.2020.0465
Funds:

National Natural Science Foundation of China 11972192

More Information
  • Corresponding author: YU Li, E-mail: yuli_happy@nuaa.edu.cn
  • Received Date: 26 Aug 2020
  • Accepted Date: 06 Nov 2020
  • Publish Date: 20 Dec 2021
  • To study the unsteady effects of capsule wake on parachute aerodynamic performance, the Realizable k-ε turbulence model and PISO algorithm are used to calculate the unsteady flow around the capsule-parachute system, and an accurate flow field vortex structure is obtained. The research on the variation of vortex, the flow field distribution and the aerodynamic characteristics of the canopy at different trailing distances has been carried out. The results show that the vortex of capsule wake causes the magnitude and direction of the vorticity at the entrance of the canopy to change constantly. As the trailing distance increases, the vorticity magnitude gradually decreases because of the increase of the vorticity's viscous dissipation, and a stable negative vortex area is formed at the entrance of the canopy. The canopy vortex's escape period is extended. The trailing distance has a much greater influence on the flow field pressure at the entrance of the canopy than at capsule. As this distance increases, the flow form gradually changes from closed to open, the velocity and pressure distribution of the flow field become more symmetrical, and a stable positive pressure zone is formed. The internal and external pressure difference increases. The influence of the capsule wake on the drag coefficient and surface pressure coefficient of the canopy is reduced when drag ratio equals or greater than 9.

     

  • [1]
    STEINBERG S Y, SIEMERS P M, SLAYMAN R G. Development of the viking parachute configuration by wind-tunnel investigation[J]. Journal of Spacecraft and Rockets, 1973, 11(2): 101-107.
    [2]
    韩晋阳, 徐宏, 高峰. 超声速半流伞设计与分析[J]. 航天返回与遥感, 2013, 34(5): 20-28. doi: 10.3969/j.issn.1009-8518.2013.05.004

    HAN J Y, XU H, GAO F. Design and analysis of supersonic half-flow parachute[J]. Spacecraft Recovery and Remote Sensing, 2013, 34(5): 20-28(in Chinese). doi: 10.3969/j.issn.1009-8518.2013.05.004
    [3]
    SENGUPTA A. Fluid structure interaction of parachutes in supersonic planetary entry[C]//21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2011.
    [4]
    SENGUPTA A, KELSCH R. Supersonic performance of disk-gap-band parachutes constrained to a 0-degree trim angle[J]. Journal of Spacecraft and Rockets, 2009, 46(6): 1155-1163. doi: 10.2514/1.41223
    [5]
    SENGUPTA A, STELZNER A. Findings from the supersonic qualification program of the mars science laboratory parachute system[C]//20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009.
    [6]
    贾贺, 姜璐璐, 薛晓鹏, 等. 超声速透气降落伞系统的气动干扰数值模拟研究[J]. 航天返回与遥感, 2019, 40(6): 26-34.

    JIA H, JIANG L L, XUE X P, et al. Numerical simulation of aerodynamic interaction of supersonic porosity parachutes[J]. Spacecraft Recovery and Remote Sensing, 2019, 40(6): 26-34(in Chinese).
    [7]
    王侃, 曹义华, 于子文, 等. 降落伞流固耦合问题的数值模拟和流场分析[J]. 北京航空航天大学学报, 2007, 33(9): 1029-1032. doi: 10.3969/j.issn.1001-5965.2007.09.007

    WANG K, CAO Y H, YU Z W, et al. Numerical simulation of parachute fluid-solid coupling problem and flow analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(9): 1029-1032(in Chinese). doi: 10.3969/j.issn.1001-5965.2007.09.007
    [8]
    王祁, 曹义华. 盘-缝-带伞超声速充气过程仿真研究[J]. 航天返回与遥感, 2018, 39(1): 35-44. doi: 10.3969/j.issn.1009-8518.2018.01.005

    WANG Q, CAO Y H. Study on the simulation of the inflating process of disk-gap-band parachute in supersonic flow[J]. Spacecraft Recovery and Remote Sensing, 2018, 39(1): 35-44(in Chinese). doi: 10.3969/j.issn.1009-8518.2018.01.005
    [9]
    宁雷鸣. 物-伞系统动力学高保真数值仿真技术及流固耦合算法研究[D]. 南京: 南京航空航天大学, 2018.

    NING L M. High-fidelity flight simulation of parachute-payload system: The multibody dynamics approach and fluid-structure interaction approach[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [10]
    张思宇, 余莉, 刘鑫. 翼伞充气过程的流固耦合方法数值仿真[J]. 北京航空航天大学学报, 2020, 46(6): 1108-1115. doi: 10.13700/j.bh.1001-5965.2019.0408

    ZHANG S Y, YU L, LIU X. Numerical simulation of parafoil inflation process based on fluid-structure interaction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1108-1115(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0408
    [11]
    YANG X, YU L, SHEN C, et al. Numerical simulation of the supersonic disk-gap-band parachute by using implicit coupling method [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2017, 18(5): 343-349. doi: 10.1515/ijnsns-2016-0047
    [12]
    YU L, SHI X L, MING X. Numerical simulation of parachute during opening process[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1): 52-57. http://www.cnki.com.cn/Article/CJFDTotal-HKXB200701008.htm
    [13]
    YANG X, YU L. Fluid-structure interaction study of the supersonic parachute using large-eddy simulation[J]. Engineering Computations, 2018, 35(3): 157-168. doi: 10.1108/EC-06-2016-0195
    [14]
    LINGARD J, DARLEY M. Simulation of parachute fluid structure interaction in supersonic flow[C]//18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005.
    [15]
    LINGARD J, DARLEY M, UNDERWOOD J C, et al. Simulation of mars supersonic parachute performance and dynamics[C]// 19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2007.
    [16]
    XUE X, NAKAMURA Y. Numerical simulation of a three-dimensional flexible parachute system under supersonic conditions[J]. Transaction of the Japan Society for Aeronautical and Space Sciences, 2013, 11: 99-108.
    [17]
    薛晓鹏, 温志湧. 超声速降落伞系统的气动干扰数值模拟研究[J]. 航天返回与遥感, 2016, 37(3): 9-18. doi: 10.3969/j.issn.1009-8518.2016.03.002

    XUE X P, WEN Z Y. Numerical simulation of aerodynamic iteraction of supersonic parachute system[J]. Spacecraft Recovery and Remote Sensing, 2016, 37(3): 9-18(in Chinese). doi: 10.3969/j.issn.1009-8518.2016.03.002
    [18]
    TUTT B A. Fluid structure interaction parachute benchmark models in LS-DYNA[C]//AIAA Aerodynamic Decelerator Systems Conference. Reston: AIAA, 2013.
    [19]
    杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报, 2015, 33(5): 714-719.

    YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica, 2015, 33(5): 714-719(in Chinese).
    [20]
    王利荣. 降落伞理论与应用[M]. 北京: 航宇出版社, 1997: 79-82.

    WANG L R. Parachute theory and application[M]. Beijing: Aerospace Publishing Press, 1997: 79-82(in Chinese).
  • Relative Articles

    [1]WU Shanqiang, CHEN Qi, SUN Yajun, NI Zao, CHEN Wen. Transonic Aeroservoelastic Analysis of Civil Aircraft Based on Over Field-Panel Method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0729
    [2]LYU Y Z,WAN H M,XU Y M. Dynamic stability analysis of a single-point hanging container[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):419-427 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0036.
    [3]LIU S S,LEI X R,SONG Z Y,et al. Influence of unloading groove opening of port plate of plunger pumps on transient flow field characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2919-2929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0713.
    [4]WEI Zhi-qiang, XU Ben, ZHOU Ding-fu. The influence of transport aircraft wake vortex on parachute and the calculation method of formation airdrop spacing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0067
    [5]LIU F Y,DENG T. Influence of dynamic behavior of supercooled large droplets on airfoil icing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):173-186 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0213.
    [6]LIU Zengxu, YU Kaikai, FU Kexin, LIN Rou, XU Jinglei. Design and flow characteristics research of exhaust systems with wide altitude and speed ranges[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0781
    [7]ZHANG H Y,LI S X,WANG Y,et al. Nozzle plume erosion property on lunar dust in Chang’E-5 mission[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1251-1261 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0447.
    [8]LI Z B,SUN W,ZHANG Y N,et al. Computation on aerodynamic and aeroacoustic characteristics of scissor tail-rotor under sideslip condition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3794-3805 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0037.
    [9]SONG Ziyi, LI Yanjun, YU Li, LI Xixi. Coupling model analysis for aerodynamic performance of parafoil with maneuvers[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0558
    [10]WANG Y T,LAN Q S,ZHOU Z,et al. Design and aerodynamic analysis of blended wing body with variable camber technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1292-1307 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0493.
    [11]ZHAO M,JIA H,WU S Q,et al. Mechanical characteristics of flexible connection technology for Mars parachute[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3815-3824 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0932.
    [12]LIANG Jin-ze, PAN Tian-yu, ZHENG Meng-zong, PENG Lian-song, CAO Meng-da. Model design and aerodynamic characteristics analysis of variable-amplitude flapping wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0271
    [13]GAO J C,CHEN W J,HU W J,et al. Analysis of CO2 distribution characteristics in cabin of civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2510-2517 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0683.
    [14]XU Y T,TAN D L,YANG C. Study on tail-slap load characteristics of high-speed projectile based on CFD/CSD coupling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2539-2546 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0939.
    [15]ZHANG Z,WANG P,ZHOU H Y. Reliability analysis of nozzle adjustment mechanism with interval distribution parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3377-3385 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0089.
    [16]YANG Xiang-gang, GAO Yong-xin, WANG Zhong-ming, LI Yi-wen, YAO Cheng. Effect of plasma excitation on aerodynamic characteristics of airfoil on Mars[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0312
    [17]WANG Zhen, ZHONG Wei, WANG Tong-guang, LI Xu-dong, ZHANG Hong-ying. Numerical simulation of unsteady aerodynamic characteristics of parafoil airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0184
    [18]LIN J Z,ZHOU L,WU P,et al. Rapid prediction technology of missile aerodynamic characteristics based on PINN model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2669-2678 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0738.
    [19]JIA Y,YANG Y T,WU J H. Effect of powertrain arrangement on aerodynamic characteristics of blended-wing-body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1156-1165 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0370.
    [20]LIU Yanbin, WANG Xuesheng, QIN Xinya, WANG Hao, CHEN Qinzhu, ZHAO Sai. Design and characteristics of reverse direct-acting high-pressure reducing valve for pneumatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1164-1173. doi: 10.13700/j.bh.1001-5965.2021.0292
  • Cited by

    Periodical cited type(2)

    1. 马诺,卫社春,孟军辉,刘清洋,雷宇声. 考虑减速伞作用的无人机内埋舱体分离流场特性与动力学. 航空学报. 2025(03): 208-224 .
    2. 耿文豹,周石,洪树峰,黄佳进. 基于CFD方法的十字形降落伞–航行体系统数值分析. 数字海洋与水下攻防. 2023(06): 719-725 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views(405) PDF downloads(36) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return