Citation: | WU Zhuoheng, YU Li, ZHAO Xiaoshun, et al. Effects of capsule wake on parachute working performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2552-2559. doi: 10.13700/j.bh.1001-5965.2020.0465(in Chinese) |
To study the unsteady effects of capsule wake on parachute aerodynamic performance, the Realizable
[1] |
STEINBERG S Y, SIEMERS P M, SLAYMAN R G. Development of the viking parachute configuration by wind-tunnel investigation[J]. Journal of Spacecraft and Rockets, 1973, 11(2): 101-107. http://www.onacademic.com/detail/journal_1000037359872410_dbea.html
|
[2] |
韩晋阳, 徐宏, 高峰. 超声速半流伞设计与分析[J]. 航天返回与遥感, 2013, 34(5): 20-28. doi: 10.3969/j.issn.1009-8518.2013.05.004
HAN J Y, XU H, GAO F. Design and analysis of supersonic half-flow parachute[J]. Spacecraft Recovery and Remote Sensing, 2013, 34(5): 20-28(in Chinese). doi: 10.3969/j.issn.1009-8518.2013.05.004
|
[3] |
SENGUPTA A. Fluid structure interaction of parachutes in supersonic planetary entry[C]//21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2011.
|
[4] |
SENGUPTA A, KELSCH R. Supersonic performance of disk-gap-band parachutes constrained to a 0-degree trim angle[J]. Journal of Spacecraft and Rockets, 2009, 46(6): 1155-1163. doi: 10.2514/1.41223
|
[5] |
SENGUPTA A, STELZNER A. Findings from the supersonic qualification program of the mars science laboratory parachute system[C]//20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009.
|
[6] |
贾贺, 姜璐璐, 薛晓鹏, 等. 超声速透气降落伞系统的气动干扰数值模拟研究[J]. 航天返回与遥感, 2019, 40(6): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201906005.htm
JIA H, JIANG L L, XUE X P, et al. Numerical simulation of aerodynamic interaction of supersonic porosity parachutes[J]. Spacecraft Recovery and Remote Sensing, 2019, 40(6): 26-34(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201906005.htm
|
[7] |
王侃, 曹义华, 于子文, 等. 降落伞流固耦合问题的数值模拟和流场分析[J]. 北京航空航天大学学报, 2007, 33(9): 1029-1032. doi: 10.3969/j.issn.1001-5965.2007.09.007
WANG K, CAO Y H, YU Z W, et al. Numerical simulation of parachute fluid-solid coupling problem and flow analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(9): 1029-1032(in Chinese). doi: 10.3969/j.issn.1001-5965.2007.09.007
|
[8] |
王祁, 曹义华. 盘-缝-带伞超声速充气过程仿真研究[J]. 航天返回与遥感, 2018, 39(1): 35-44. doi: 10.3969/j.issn.1009-8518.2018.01.005
WANG Q, CAO Y H. Study on the simulation of the inflating process of disk-gap-band parachute in supersonic flow[J]. Spacecraft Recovery and Remote Sensing, 2018, 39(1): 35-44(in Chinese). doi: 10.3969/j.issn.1009-8518.2018.01.005
|
[9] |
宁雷鸣. 物-伞系统动力学高保真数值仿真技术及流固耦合算法研究[D]. 南京: 南京航空航天大学, 2018.
NING L M. High-fidelity flight simulation of parachute-payload system: The multibody dynamics approach and fluid-structure interaction approach[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
|
[10] |
张思宇, 余莉, 刘鑫. 翼伞充气过程的流固耦合方法数值仿真[J]. 北京航空航天大学学报, 2020, 46(6): 1108-1115. doi: 10.13700/j.bh.1001-5965.2019.0408
ZHANG S Y, YU L, LIU X. Numerical simulation of parafoil inflation process based on fluid-structure interaction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1108-1115(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0408
|
[11] |
YANG X, YU L, SHEN C, et al. Numerical simulation of the supersonic disk-gap-band parachute by using implicit coupling method [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2017, 18(5): 343-349. doi: 10.1515/ijnsns-2016-0047
|
[12] |
YU L, SHI X L, MING X. Numerical simulation of parachute during opening process[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1): 52-57. http://www.cnki.com.cn/Article/CJFDTotal-HKXB200701008.htm
|
[13] |
YANG X, YU L. Fluid-structure interaction study of the supersonic parachute using large-eddy simulation[J]. Engineering Computations, 2018, 35(3): 157-168. doi: 10.1108/EC-06-2016-0195
|
[14] |
LINGARD J, DARLEY M. Simulation of parachute fluid structure interaction in supersonic flow[C]//18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005.
|
[15] |
LINGARD J, DARLEY M, UNDERWOOD J C, et al. Simulation of mars supersonic parachute performance and dynamics[C]// 19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2007.
|
[16] |
XUE X, NAKAMURA Y. Numerical simulation of a three-dimensional flexible parachute system under supersonic conditions[J]. Transaction of the Japan Society for Aeronautical and Space Sciences, 2013, 11: 99-108. http://www.onacademic.com/detail/journal_1000040517144010_7dae.html
|
[17] |
薛晓鹏, 温志湧. 超声速降落伞系统的气动干扰数值模拟研究[J]. 航天返回与遥感, 2016, 37(3): 9-18. doi: 10.3969/j.issn.1009-8518.2016.03.002
XUE X P, WEN Z Y. Numerical simulation of aerodynamic iteraction of supersonic parachute system[J]. Spacecraft Recovery and Remote Sensing, 2016, 37(3): 9-18(in Chinese). doi: 10.3969/j.issn.1009-8518.2016.03.002
|
[18] |
TUTT B A. Fluid structure interaction parachute benchmark models in LS-DYNA[C]//AIAA Aerodynamic Decelerator Systems Conference. Reston: AIAA, 2013.
|
[19] |
杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报, 2015, 33(5): 714-719. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201505021.htm
YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica, 2015, 33(5): 714-719(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201505021.htm
|
[20] |
王利荣. 降落伞理论与应用[M]. 北京: 航宇出版社, 1997: 79-82.
WANG L R. Parachute theory and application[M]. Beijing: Aerospace Publishing Press, 1997: 79-82(in Chinese).
|