Volume 47 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
WANG Xinglong, HE Min, LIU Mingxueet al. Air traffic CPS cascading failure and mitigation strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2426-2433. doi: 10.13700/j.bh.1001-5965.2020.0466(in Chinese)
Citation: WANG Xinglong, HE Min, LIU Mingxueet al. Air traffic CPS cascading failure and mitigation strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2426-2433. doi: 10.13700/j.bh.1001-5965.2020.0466(in Chinese)

Air traffic CPS cascading failure and mitigation strategy

doi: 10.13700/j.bh.1001-5965.2020.0466
Funds:

National Key R & D Program of China 2020YFB1600101

Scientific Research Project of Tianjin Educational Committee 2020ZD01

More Information
  • Corresponding author: WANG Xinglong. E-mail: xinglong1979@163.com
  • Received Date: 27 Aug 2020
  • Accepted Date: 06 Nov 2020
  • Publish Date: 20 Dec 2021
  • To effectively alleviate the cascading failure of air traffic, the traditional load-capacity model is improved, and the critical value of capacity adjusting parameter is discovered. An air traffic Cyber Physical System (CPS) model is built, and its nodes are defined to be in three states: normal, congested, and failed. Different flow allocation strategies, including degree allocation, betweenness centrality allocation, and remaining capacity allocation, are adopted to alleviate the cascading failure of air route network and air traffic control network, and the mitigation result is assessed by network normal rate. Taking air traffic CPS in East China as an analysis example, the results show that the network recovers first under betweenness centrality allocation, which suggests that it has good strength against cascading failure. Nodes' ability to receive additional flow is made full use of under remaining capacity allocation, and the network returns to normal state first, which indicates that the mitigation strategy is reliable.

     

  • loading
  • [1]
    汤奕, 王琦, 倪明, 等. 电力信息物理融合系统中的网络攻击分析[J]. 电力系统自动化, 2016, 40(6): 148-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201606024.htm

    TANG Y, WANG Q, NI M, et al. Analysis of cyber attacks in cyber physical power system[J]. Automation of Electric Power Systems, 2016, 40(6): 148-151(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201606024.htm
    [2]
    方宇恒, 徐中伟, 彭聪. 信息物理融合系统环境下轨道交通信号安全控制规划研究[J]. 城市轨道交通研究, 2018, 21(4): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201804008.htm

    FANG Y H, XU Z W, PENG C. Study on the planning of rail transit safety signal control in CPS[J]. Urban Mass Transit, 2018, 21(4): 25-30(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201804008.htm
    [3]
    谭鹏. 基于T-CPS的螺旋道路车车协同模型及稳定性研究[D]. 重庆: 重庆大学, 2019.

    TAN P. Research on vehicle-vehicle cooperative model and its stability on a spiral road based on T-CPS[D]. Chongqing: Chongqing University, 2019(in Chinese).
    [4]
    LEVSHUN D, KOTENKO I, CHECHULIN A. The application of the methodology for secure cyber-physical systems design to improve the semi-natural model of the railway infrastructure[J]. Microprocessors and Microsystems, 2021, 87: 103482. doi: 10.1016/j.micpro.2020.103482
    [5]
    SAMPIGETHAYA K, POOVENDRAN R. Aviation cyber-physical systems: Foundations for future aircraft and air transport[J]. Proceedings of the IEEE, 2013, 101(8): 1834-1855. doi: 10.1109/JPROC.2012.2235131
    [6]
    REN L, LIAO H, CASTILLO-EFFEN M, et al. Transformation of mission-critical applications in aviation to cyber-physical systems[M]//SONG H B, RAWAT D B, JESCHKE S. Cyber-physical systems: Foundations, principles and applications. Amsterdam: Elsevier, 2017: 339-362.
    [7]
    王兴隆, 苗尚飞, 贺敏, 等. 基于改进K-shell算法的空中交通信息物理系统节点排序[J]. 中国科技论文, 2020, 15(10): 1144-1149. doi: 10.3969/j.issn.2095-2783.2020.10.008

    WANG X L, MIAO S F, HE M, et al. Node ranking of air traffic information physical system based on improved K-shell algorithm[J]. China Sciencepaper, 2020, 15(10): 1144-1149(in Chinese). doi: 10.3969/j.issn.2095-2783.2020.10.008
    [8]
    种鹏云. 基于复杂网络的危险品运输网络拓扑特性、级联失效机制及抗毁性研究[D]. 成都: 西南交通大学, 2015.

    ZHONG P Y. Topology properties, mechanism of cascading failure and invulnerability for hazardous materials transportation network based on complex network[D]. Chengdu: Southwest Jiaotong University, 2015(in Chinese).
    [9]
    崔梦頔. 无标度网络级联失效缓解策略研究[D]. 秦皇岛: 燕山大学, 2018: 19-37.

    CUI M D. Research on a mitigation strategy for scale-free network against cascading failures[D]. Qinhuangdao: Yanshan University, 2018: 19-37(in Chinese).
    [10]
    齐雁楠, 高经东. 域扇区网络级联失效抗毁性及优化策略[J]. 航空学报, 2018, 39(12): 322579. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201812031.htm

    QI Y N, GAO J D. Cascading failure invulnerability and optimization strategy of airspace sector network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 322579(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201812031.htm
    [11]
    BAHETI R, GILL H. Cyber-physical systems[J]. The Impact of Control Technology, 2011, 12(1): 161-166.
    [12]
    AMARAL L A N, SCALA A, BARTHELEMY M, et al. Classes of small-world networks[J]. PNAS, 2000, 97(21): 11149-11152. doi: 10.1073/pnas.200327197
    [13]
    中国民用航空局. 中国民用航空规章. 第93部. 民用航空空中交通管理规则: CCAR-93TM-R5-2017[S]. 北京: 中国民用航空局, 2017.

    Civil Aviation Administration of China. China civil aviation regulations 93. Civil aviation air traffic management rules: CCAR-93TM-R5-2017[S]. Beijing: Civil Aviation Administration of China, 2017(in Chinese).
    [14]
    王兴隆, 刘明学, 潘维煌. 空中交通信息物理系统的脆性分析[J]. 中国科技论文, 2019, 14(2): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201902008.htm

    WANG X L, LIU M X, PAN W H. Analysis of the vulnerability of air traffic information physical systems[J]. China Sciencepaper, 2019, 14(2): 164-168(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201902008.htm
    [15]
    王红勇, 温瑞英. 基于复杂网络的空中交通态势风险评估方法[J]. 中国安全科学学报, 2018, 28(5): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201805029.htm

    WANG H Y, WEN R Y. Risk assessment method of air traffic situation based on complex network[J]. China Safety Science Journal, 2018, 28(5): 172-178(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201805029.htm
    [16]
    高经东. 基于复杂网络的空域扇区网络分析及抗毁性研究[D]. 天津: 中国民航大学, 2018: 24-26.

    GAO J D. Analysis and invulnerability research of sectors network based on complex network[D]. Tianjin: Civil Aviation University of China, 2018: 24-26(in Chinese).
    [17]
    窦炳琳, 张世永. 复杂网络上级联失效的负载容量模型[J]. 系统仿真学报, 2011, 23(7): 1459-1463. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201107035.htm

    DOU B L, ZHANG S Y. Load-capacity model for cascading failures of complex networks[J]. Journal of System Simulation, 2011, 23(7): 1459-1463(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201107035.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(293) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return