Du Fuzhou, Tang Xiaoqing. Method of MSPC fault detection and diagnosis based on variable contributions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10): 1295-1299. (in Chinese)
Citation: ZHAN Zhixin, YU Xun, HU Weiping, et al. Fatigue life prediction of aluminum alloy with pre-corrosion damage based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2434-2441. doi: 10.13700/j.bh.1001-5965.2020.0477(in Chinese)

Fatigue life prediction of aluminum alloy with pre-corrosion damage based on damage mechanics

doi: 10.13700/j.bh.1001-5965.2020.0477
Funds:

National Natural Science Foundation of China 12002011

Basic and Applied Basic Research Foundation of Guangdong Province 2019A1515110334

More Information
  • Corresponding author: HU Weiping. E-mail: huweiping@buaa.edu.cn
  • Received Date: 31 Aug 2020
  • Accepted Date: 05 Nov 2020
  • Publish Date: 20 Dec 2021
  • In engineering structures, the corrosion fatigue failure is a common phenomenon. The fatigue crack often occurs around the corrosion pit, which seriously affects the fatigue characteristics of materials. In this paper, based on the continuous damage mechanics, a method is proposed for the fatigue life prediction of aluminum alloy with pre-corrosion damage. First, the influence of corrosion is studied from two aspects: one is the local initial damage caused by corrosion, and the other one is the local stress concentration caused by corrosion pit. Then, the fatigue damage evolution equations considering pre-corrosion damage are established and the related numerical solution is implemented. After that, according to the results of pre-corrosion fatigue test and numerical prediction, the initial damage of material caused by pre-corrosion is obtained. Finally, the fatigue life of the aluminum alloy with pre-corrosion pit is predicted by the proposed method, and the predicted results are compared with the experimental results, which verifies the effectiveness of the proposed method.

     

  • [1]
    SCHIJVE J. 结构与材料疲劳[M]. 吴学仁, 译. 北京: 航空工业出版社, 2014.

    SCHIJVE J. Fatigue of structures and materials[M]. WU X R, translated. Beijing: Aviation Industry Press, 2014(in Chinese).
    [2]
    姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003.

    YAO W X. Fatigue life analysis of structures[M]. Beijing: National Defense Industry Press, 2003(in Chinese).
    [3]
    CHEN Y J, LIU C C, ZHOU J, et al. Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions[J]. International Journal of Fatigue, 2017, 98: 269-278. doi: 10.1016/j.ijfatigue.2017.02.004
    [4]
    邓景辉, 陈平剑, 付裕. 用于预腐蚀航空铝合金材料疲劳寿命分析的腐蚀当量裂纹的抛物线模型[J]. 航空学报, 2018, 39(2): 146-156.

    DENG J H, CHEN P J, FU Y. Parabolic model of equivalent crack approach for predicting fatigue life of pre-corroded aluminum alloy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 146-156(in Chinese).
    [5]
    CO N E C, BURNS J T. Effects of macro-scale corrosion damage feature on fatigue crack initiation and fatigue behavior[J]. International Journal of Fatigue, 2017, 103: 234-247. doi: 10.1016/j.ijfatigue.2017.05.028
    [6]
    穆志韬, 陈定海, 朱做涛, 等. 腐蚀条件下LD2航空铝合金裂纹扩展规律研究[J]. 航空学报, 2013, 34(3): 574-579.

    MU Z T, CHEN D H, ZHU Z T, et al. Fatigue crack growth behavior of aerospace aluminum alloy LD2 under corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 574-579(in Chinese).
    [7]
    DENG L, YAN W, NIE L. A simple corrosion fatigue design method for bridges considering the coupled corrosion-overloading effect[J]. Engineering Structures, 2019, 178: 309-317. doi: 10.1016/j.engstruct.2018.10.028
    [8]
    谭晓明, 张丹峰, 卞贵学, 等. 腐蚀对新型高强度铝合金疲劳裂纹萌生机制及扩展行为的作用[J]. 机械工程学报, 2014, 50(22): 76-83.

    TAN X M, ZHANG D F, BIAN G X, et al. Effect of corrosion damage on fatigue crack initiation mechanism and growth behavior of high strength aluminum alloy[J]. Journal of Mechanical Engineering, 2014, 50(22): 76-83(in Chinese).
    [9]
    EL MAY M, PALIN-LUC T, SAINTIER N, et al. Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3[J]. International Journal of Fatigue, 2013, 47: 330-339. doi: 10.1016/j.ijfatigue.2012.09.018
    [10]
    刘治国, 王海东, 贾明明. 航空铝合金点蚀形貌对应力集中系数影响量化分析[J]. 强度与环境, 2018, 45(1): 25-31.

    LIU Z G, WANG H D, JIA M M. Quantitative influence analysis of aero aluminum alloy pitting corrosion morphology to stress concentration factor[J]. Structure & Environment Engineering, 2018, 45(1): 25-31(in Chinese).
    [11]
    WANG L, XIN J, CHENG L, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment[J]. Corrosion Science, 2019, 147: 108-127. doi: 10.1016/j.corsci.2018.11.007
    [12]
    BURSTEIN G T, LIU C. Nucleation of corrosion pits in Ringer's solution containing bovine serum[J]. Corrosion Science, 2007, 49(11): 4296-4306. doi: 10.1016/j.corsci.2007.05.018
    [13]
    ARUNACHALAM S, FAWAZ S. Test method for corrosion pit-to-fatigue crack transition from a corner of hole in 7075-T651 aluminum alloy[J]. International Journal of Fatigue, 2016, 91: 50-58. doi: 10.1016/j.ijfatigue.2016.05.021
    [14]
    崔泗鹏, 姚卫星, 夏天翔. 连接件振动疲劳寿命分析的名义应力法[J]. 中国机械工程, 2014, 25(18): 2519-2522. doi: 10.3969/j.issn.1004-132X.2014.18.020

    CUI S P, YAO W X, XIA T X. Nominal stress approach for fatigue life prediction of mutifastener joints under vibration loading[J]. China Mechanical Engineering, 2014, 25(18): 2519-2522(in Chinese). doi: 10.3969/j.issn.1004-132X.2014.18.020
    [15]
    AL ZAMZAMI I, SUSMEL L. On the accuracy of nominal, structural, and local stress based approaches in designing aluminium welded joints against fatigue[J]. International Journal of Fatigue, 2017, 101: 137-158. doi: 10.1016/j.ijfatigue.2016.11.002
    [16]
    SHANG D G, WANG D K, LI M, et al. Local stress-strain field intensity approach to fatigue life prediction under random cyclic loading[J]. International Journal of Fatigue, 2001, 23(10): 903-910. doi: 10.1016/S0142-1123(01)00051-2
    [17]
    SUSMEL L, TAYLOR D. A critical distance/plane method to estimate finite life of notched components under variable amplitude uniaxial/multiaxial fatigue loading[J]. International Journal of Fatigue, 2012, 38: 7-24. doi: 10.1016/j.ijfatigue.2011.11.015
    [18]
    PANDEY V B, SINGH I V, MISHRA B K, et al. A new framework based on continuum damage mechanics and XFEM for high cycle fatigue crack growth simulations[J]. Engineering Fracture Mechanics, 2019, 206: 172-200. doi: 10.1016/j.engfracmech.2018.11.021
    [19]
    LEMAITRE J. A course on damage mechanics[M]. Berlin: Springer, 2012.
    [20]
    ZHAN Z, HU W, MENG Q, et al. Continuum damage mechanics-based approach to the fatigue life prediction for 7050-T7451 aluminum alloy with impact pit[J]. International Journal of Damage Mechanics, 2016, 25(7): 943-966. doi: 10.1177/1056789515608232
    [21]
    LEMAITRE J, DESMORAT R. Engineering damage mechanics: Ductile, creep, fatigue and brittle failures[M]. Berlin: Spriner, 2005: 53-59.
    [22]
    CHABOCHE J, LESNE P. A nonlinear continuous fatigue damage model[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(1): 1-17.
    [23]
    CHAUDONNERET M. A simple and efficient multiaxial fatigue damage model for engineering applications of macro-crack initiation[J]. Journal of Engineering Materials and Technology, 1993, 115(4): 373-379. doi: 10.1115/1.2904232
    [24]
    HU W P, SHEN Q A, ZHANG M, et al. Corrosion-fatigue life prediction for 2024-T62 aluminum alloy using damage mechanics-based approach[J]. International Journal of Damage Mechanics, 2012, 21(8): 1245-1266. doi: 10.1177/1056789511432791
    [25]
    张有宏, 吕国志, 陈跃良. LY12-CZ铝合金预腐蚀及疲劳损伤研究[J]. 航空学报, 2005, 26(6): 779-782. doi: 10.3321/j.issn:1000-6893.2005.06.024

    ZHANG Y H, LU G Z, CHEN Y L. Predicting fatigue life from pre-corroded LY12-CZ aluminium test[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 779-782(in Chinese). doi: 10.3321/j.issn:1000-6893.2005.06.024
  • Relative Articles

    [1]WEI J R,WU Q,WU W,et al. Study on global stability of aluminum alloy honeycomb cylinder under axial compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):962-972 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0135.
    [2]ZHANG Q S,LI D Q,LIAN X X. Study of corrosion and hydrogen evolution risk of waded lithium ion-battery[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2083-2092 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0617.
    [3]WU L,TENG J F,LYU Y L,et al. Experimental study on kinetics of TLP diffusion bonding of GH3230 alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2595-2600 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0644.
    [4]LI Peiyuan, CAI Qiaoyan, LI Zengshan, FENG Jiahe. Damage tolerance analysis and research on reusable launch vehicle connection structures[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0221
    [5]DENG J X,CHEN L,LU S T,et al. Damage distribution of composite structures of a certain type aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):920-930 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0379.
    [6]RAN G L,MA Y H,AN Z Q,et al. Study of tensile properties of laminates containing microvascular channels with different diameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1405-1415 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0490.
    [7]LIU D J,TIAN G,LI Y L,et al. Research on pre-corrosion fatigue properties of 2195 Al-Li alloys in 30% HNO3[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1129-1137 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0445.
    [8]GUO Y,LIU D J,CHANG X L,et al. Corrosion behavior of 2195-T8 aluminum-lithium alloy with artificial defects in 30% HNO3[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):896-903 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0344.
    [9]YANG Gong-peng, ZHOU Zheng-gan, MA Teng-fei, WANG Jun, LI Yang, ZHOU Wen-bin. Research on finite element simulation modeling for ultrasonic testing of coarse-grained materials[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0676
    [10]CHEN Shi, XU He-ming, SUN Kai, XU Yi-han, ZHANG Yi-shang. Prediction of creep strain of turbine blades based on finite element nodes[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0639
    [11]PANG C,LIU D J,TIAN G,et al. Experimental and simulation study on fatigue multi crack fusion of 2195-T8 Al-Li alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):350-358 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0249.
    [12]YU Y B,HE Z Q,HE X F,et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2585-2594 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0639.
    [13]DONG Q,CHENG S F,ZHANG X M,et al. Vibration response of asphalt concrete pavement under vehicle-road coupled load[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2385-2394 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0654.
    [14]ZHU P R,LIU Y Z,LIU Z C,et al. Fault diagnosis of synchronous generator rotating rectifier based on CEEMD and improved ELM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1166-1175 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0376.
    [15]XU Q Y,MENG Y,LI S. Strain-based geometrically nonlinear beam modeling and analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2039-2049 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0627.
    [16]CHEN Y,ZHOU Z J,WANG J,et al. Structural safety assessment model of large liquid tanks considering environmental disturbance[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):981-989 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0350.
    [17]WU Y,KONG L,SUN Q Q,et al. Heat transfer path design and heat flow analysis of satellite phased array antenna[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1127-1134 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0373.
    [18]ZHANG X M,NIE P F,GAO Z B,et al. Influence of temperature stress on fatigue damage of airfield pavement slab[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2558-2566 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0729.
    [19]ZHANG S,HE Y T,NI B,et al. Effect of nitrate on exfoliation corrosion of 2A12-T4 aluminum alloy under full-immersion corrosion condition[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1372-1382 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0473.
    [20]GONG Xiaoquan, WU Xiaojun, TANG Jing, LI Ming, ZHANG Jian. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1889-1898. doi: 10.13700/j.bh.1001-5965.2021.0046
  • Cited by

    Periodical cited type(3)

    1. 曾浪,蔡灿,廖飞龙,谭政博,曹文洋,周圣文. 海洋井架腐蚀后力学强度及疲劳性能. 科学技术与工程. 2024(35): 14911-14920 .
    2. 徐会会,奥妮,吴圣川,吕昭,沈朝,吴伟,刘智勇,康国政. 金属结构材料腐蚀疲劳寿命预测模型的研究进展. 固体力学学报. 2023(01): 1-33 .
    3. 翁硕,俞俊,赵礼辉,冯金芝,郑松林. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究. 中国腐蚀与防护学报. 2022(03): 486-492 .

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(889) PDF downloads(69) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return