Volume 47 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
LI Zhijun, XIANG Jianjun, SHENG Tao, et al. G1-variation-coefficient-KL based TOPSIS radar jamming effectiveness evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2571-2578. doi: 10.13700/j.bh.1001-5965.2020.0493(in Chinese)
Citation: LI Zhijun, XIANG Jianjun, SHENG Tao, et al. G1-variation-coefficient-KL based TOPSIS radar jamming effectiveness evaluation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2571-2578. doi: 10.13700/j.bh.1001-5965.2020.0493(in Chinese)

G1-variation-coefficient-KL based TOPSIS radar jamming effectiveness evaluation

doi: 10.13700/j.bh.1001-5965.2020.0493
Funds:

Aeronautical Science Foundation of China 20175596020

More Information
  • Corresponding author: XIANG Jianjun, E-mail: 1812268525@qq.com
  • Received Date: 02 Sep 2020
  • Accepted Date: 25 Dec 2020
  • Publish Date: 20 Dec 2021
  • When jamming effectiveness evaluation is transformed to a multi-attribute decision-making problem, traditional Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) is too objective to fully reflect the will of the evaluator, and the method only considers the inter-index Euclidean distance during the usage, which causes that certain solutions on the vertical line of the positive and negative ideal solutions cannot be distinguished. This paper proposes a G1-variation-coefficient-KL based TOPSIS radar jamming effectiveness evaluation algorithm. This method uses the G1 method and the variation coefficient method to obtain the subjective and objective weight, and introduces the coefficient of difference which can fully reflect the subjective and objective degree. With the application of relative entropy, the problem that the solutions on the vertical line of the positive and negative ideal solution cannot be sorted is solved, simulation results show that the performance of the proposed algorithm is better than some traditional algorithms in evaluating the effectiveness of jamming.

     

  • loading
  • [1]
    崔炳福. 雷达对抗干扰有效性评估[M]. 北京: 电子工业出版社, 2017: 4-10.

    CUI B F. Evaluation of radar counter jamming effectiveness[M]. Beijing: Publishing House of Electronics Industry, 2017: 4-10(in Chinese).
    [2]
    王博阳. 雷达对抗在线效能评估技术研究[D]. 西安: 西安电子科技大学, 2018: 10-20.

    WANG B Y. Research on the online effectiveness evaluation of radar countermeasure[D]. Xi'an: Xidian University, 2018: 10-20(in Chinese).
    [3]
    董家隆, 李桂祥, 陈辉. 基于改进ADC模型的天波雷达作战效能评估[J]. 雷达科学与技术, 2017, 15(2): 126-130. doi: 10.3969/j.issn.1672-2337.2017.02.003

    DONG J L, LI G X, CHEN H. Operational effectiveness evaluation of sky-wave over-the-horizon radar based on improved ADC model[J]. Radar Science and Technology, 2017, 15(2): 126-130(in Chinese). doi: 10.3969/j.issn.1672-2337.2017.02.003
    [4]
    徐沙, 张洁. 一种基于层次分析法的雷达抗干扰效能评估方法[J]. 航天电子对抗, 2016, 32(3): 13-15. doi: 10.3969/j.issn.1673-2421.2016.03.004

    XU S, ZHANG J. An evaluation method of radar anti-jamming efficiency based on analytical hierarchy process[J]. Aerospace Electronic Warfare, 2016, 32(3): 13-15(in Chinese). doi: 10.3969/j.issn.1673-2421.2016.03.004
    [5]
    石亮, 黄仕家, 邓有为. 基于云模型的机载电子对抗系统效能评估方法[J]. 弹箭与制导学报, 2006, 26(3): 311-314. doi: 10.3969/j.issn.1673-9728.2006.03.100

    SHI L, HUANG S J, DENG Y W. Effectiveness evaluation of airborne EW system based on cloud model[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(3): 311-314(in Chinese). doi: 10.3969/j.issn.1673-9728.2006.03.100
    [6]
    史彦斌, 高宪军, 张安. 云理论在航空电子战系统效能评估中的应用[J]. 计算机工程与应用, 2009, 45(22): 241-243. doi: 10.3778/j.issn.1002-8331.2009.22.077

    SHI Y B, GAO X J, ZHANG A. Application of cloud theory on aviation EW system effectiveness evaluation[J]. Computer Engineering and Applications, 2009, 45(22): 241-243(in Chinese). doi: 10.3778/j.issn.1002-8331.2009.22.077
    [7]
    李婧娇. 多功能电子战系统作战效能评估仿真[D]. 镇江: 江苏科技大学, 2010: 25-30.

    LI J J. Simulation of MFEW system's counterwork efficiency evaluation[D]. Zhenjiang: Jiangsu University of Science and Technology, 2010: 25-30(in Chinese).
    [8]
    QI Z F, WANG G S. Grey synthetic relational analysis method-based effectiveness evaluation of EWCC system with incomplete information[J]. Applied Mechanics and Materials, 2014, 638-640: 2409-2412. doi: 10.4028/www.scientific.net/AMM.638-640.2409
    [9]
    张友益, 徐才宏, 等. 雷达对抗及反对抗作战能力评估与验证[M]. 北京: 国防工业出版社, 2019: 43-50.

    ZHANG Y Y, XU C H, et al. Radar countermeasure and countercountermeasure operational capability evaluation and verification[M]. Beijing: National Defense Industry Press, 2019: 43-50(in Chinese).
    [10]
    吕志鹏, 吴鸣, 宋振浩, 等. 电能质量CRITIC-TOPSIS综合评价方法[J]. 电机与控制学报, 2020, 24(1): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202001017.htm

    LV Z P, WU M, SONG Z H, et al. Comprehensive evaluation of power quality on CRITIC-TOPSIS method[J]. Electric Machines and Control, 2020, 24(1): 137-144(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ202001017.htm
    [11]
    奚之飞, 徐安, 寇英信, 等. 基于改进GRA-TOPSIS的空战威胁评估[J]. 北京航空航天大学学报, 2020, 46(2): 388-397. doi: 10.13700/j.bh.1001-5965.2019.0207

    XI Z F, XU A, KOU Y X, et al. Air combat threat assessment based on improved GRA-TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 388-397(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0207
    [12]
    史哲齐, 李继繁, 王悦, 等. 基于TOPSIS-AHP法的石化企业环境风险筛选研究[J]. 南开大学学报(自然科学版), 2020, 53(1): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-NKDZ202001004.htm

    SHI Z Q, LI J F, WANG Y, et al. Study on environmental risk screening of petrochemical enterprises based on TOPSIS-AHP[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2020, 53(1): 17-25(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NKDZ202001004.htm
    [13]
    GEEM Z W, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm: Harmony search[J]. Simulation, 2001, 76(2): 60-68. doi: 10.1177/003754970107600201
    [14]
    KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86. doi: 10.1214/aoms/1177729694
    [15]
    赵萌, 邱菀华, 刘北上. 基于相对熵的多属性决策排序方法[J]. 控制与决策, 2010, 25(7): 1098-1100. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201007030.htm

    ZHAO M, QIU W H, LIU B S. Relative entropy evaluation method for multiple attribute decision making[J]. Control and Decision, 2010, 25(7): 1098-1100(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201007030.htm
    [16]
    鲍学英, 柴乃杰, 王起才. 基于G1法和改进DEA的铁路绿色施工节能措施综合效果研究[J]. 铁道学报, 2018, 40(10): 15-22. doi: 10.3969/j.issn.1001-8360.2018.10.003

    BAO X Y, CHAI N J, WANG Q C. Comprehensive effect of energy-saving measures on railway green construction based on G1 method and improved DEA models[J]. Journal of the China Railway Society, 2018, 40(10): 15-22(in Chinese). doi: 10.3969/j.issn.1001-8360.2018.10.003
    [17]
    翁鑫锦. 基于机器学习的雷达干扰效能评估[D]. 成都: 电子科技大学, 2019: 5-30.

    WENG X J. Effectiveness evaluation of radar jamming based on machine learning[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 5-30(in Chinese).
    [18]
    于亮, 方志耕, 吴利丰, 等. 基于灰色类别差异特性的评价指标客观权重极大熵配置模型[J]. 系统工程理论与实践, 2014, 34(8): 2065-2070. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201408015.htm

    YU L, FANG Z G, WU L F, et al. Maximum entropy configuration model of objective index weight based on grey category characteristics difference[J]. Systems Engineering-Theory & Practice, 2014, 34(8): 2065-2070(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201408015.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(6)

    Article Metrics

    Article views(732) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return