Citation: | WANG Mingyue, LIN Jiayuan, LIU Xinhua, et al. Design and optimization of battery pack liquid cooling scheme based on serpentine channel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 166-173. doi: 10.13700/j.bh.1001-5965.2020.0514(in Chinese) |
Compared with traditional vehicles, electric vehicles have a broad application prospect under the background of rapid development of new energy. As one of the power sources of electric vehicles, the performance of battery is easily affected by temperature. Battery thermal management system, which can control its working temperature, is of great significance to extend battery service time and ensure the safety and stability of electric vehicles. Aimed at the phenomenon that the temperature of power battery itself is too high, the heat generation characteristics of the battery are analyzed firstly, and then a set of liquid cooling thermal management scheme based on serpentine channel is proposed and optimized. Finally, the simulation results in temperature field show that the optimized liquid cooling structure has an obvious impact on the working environment of the battery pack. Especially under the high temperature condition, the battery can work in the optimal temperature range of 20℃-35℃, and meet the requirement that the temperature difference within the battery pack is less than 10℃.
[1] |
郭阳东, 李玉芳, 张文浩, 等. 典型工况下动力电池温度特性研究[J]. 电源技术, 2018, 42(8): 1143-1147. doi: 10.3969/j.issn.1002-087X.2018.08.016
GUO Y D, LI Y F, ZHANG W H, et al. Research on temperature performance of power battery under typical condition[J]. Chinese Journal of Power Sources, 2018, 42(8): 1143-1147(in Chinese). doi: 10.3969/j.issn.1002-087X.2018.08.016
|
[2] |
于翔, 易勇, 赵文天, 等. 纯电动乘用车动力电池冷却策略优化研究[C]//2019中国汽车工程学会年会, 2019: 319-324.
YU X, YI Y, ZHAO W T, et al. Research on optimization of power battery cooling strategy for pure electric passenger cars[C]//Proceedings of the Annual Meeting of China Society of Automotive Engineering, 2019: 319-324(in Chinese).
|
[3] |
葛瑞, 李云扬. 锂离子动力电池热管理系统的关键技术[J]. 电源世界, 2017(12): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201411017.htm
GE R, LI Y Y. Key technologies of thermal management system for lithium-ion power battery[J]. The World of Power Supply, 2017(12): 41-47(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201411017.htm
|
[4] |
王雅, 方林. 锂离子动力电池热管理方法研究进展[J]. 船电技术, 2019, 39(5): 14-18. doi: 10.3969/j.issn.1003-4862.2019.05.008
WANG Y, FANG L. Research progress of battery thermal management on lithium-ion power batteries[J]. Marine Electric & Electronic Engineering, 2019, 39(5): 14-18(in Chinese). doi: 10.3969/j.issn.1003-4862.2019.05.008
|
[5] |
LU Z, YU X L, WEI L C, et al. A comprehensive experimental study on temperature-dependent performance of lithium-ion battery[J]. Applied Thermal Engineering, 2019, 158: 113800. doi: 10.1016/j.applthermaleng.2019.113800
|
[6] |
CHEN K, WU W X, YUAN F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167: 781-790. doi: 10.1016/j.energy.2018.11.011
|
[7] |
陈凯, 汪双凤. 基于贪婪算法的风冷式动力电池热管理系统优化[J]. 工程热物理学报, 2018, 39(5): 1092-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201805025.htm
CHEN K, WANG S F. Optimization of air-cooled battery thermal management system based on greedy algorithm[J]. Journal of Engineering Thermophysics, 2018, 39(5): 1092-1096(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201805025.htm
|
[8] |
宋俊杰, 王义春, 王腾. 动力电池组分层风冷式热管理系统仿真[J]. 化工进展, 2017, 36(S1): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2017S1027.htm
SONG J J, WANG Y C, WANG T. Simulation of layered air cooling thermal management system for lithium-ion battery pack[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 187-194(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2017S1027.htm
|
[9] |
黄堪丰, 陈才敏, 李锦和. 基于涡流管技术的动力电池热管理系统研究[J]. 机床与液压, 2019, 47(19): 96-99. doi: 10.3969/j.issn.1001-3881.2019.19.020
HUANG K F, CHEN C M, LI J H. Research on power battery thermal management system based on vortex tube technology[J]. Machine Tool & Hydraulics, 2019, 47(19): 96-99(in Chinese). doi: 10.3969/j.issn.1001-3881.2019.19.020
|
[10] |
MAHAMUD R, PARK C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196(13): 5685-5696. doi: 10.1016/j.jpowsour.2011.02.076
|
[11] |
MILLS A, AL-HALLAJ S. Simulation of passive thermal management system for lithium-ion battery packs[J]. Journal of Power Sources, 2005, 141(2): 307-315. doi: 10.1016/j.jpowsour.2004.09.025
|
[12] |
王亮, 王荻楠, 王秀春. 冷却和蓄热结合的动力电池组热管理系统模型[J]. 电源技术, 2019, 43(4): 662-665. doi: 10.3969/j.issn.1002-087X.2019.04.035
WANG L, WANG D N, WANG X C. Thermal management system model combining of cooling and heat preservation for power batteries[J]. Chinese Journal of Power Sources, 2019, 43(4): 662-665(in Chinese). doi: 10.3969/j.issn.1002-087X.2019.04.035
|
[13] |
ZHENG Y R, SHI Y, HUANG Y H. Optimisation with adiabatic interlayers for liquid-dominated cooling system on fast charging battery packs[J]. Applied Thermal Engineering, 2019, 147: 636-646. doi: 10.1016/j.applthermaleng.2018.10.090
|
[14] |
WU W X, YANG X Q, ZHANG G Q, et al. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system[J]. Energy Conversion and Management, 2017, 138: 486-492. doi: 10.1016/j.enconman.2017.02.022
|
[15] |
RAO Z H, WANG S F, WU M C, et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion and Management, 2013, 65: 92-97. doi: 10.1016/j.enconman.2012.08.014
|
[16] |
周海阔, 杨涛, 李平, 等. 基于热管技术的锂电池箱热管理系统设计与实验验证[J]. 可再生能源, 2017, 35(9): 1395-1403. https://www.cnki.com.cn/Article/CJFDTOTAL-NCNY201709021.htm
ZHOU H K, YANG T, LI P, et al. Design and experimental verification of thermal management systems for power battery based on heat pipe technology[J]. Renewable Energy Resources, 2017, 35(9): 1395-1403(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NCNY201709021.htm
|
[17] |
PENDERGAST D R, DEMAURO E P, FLETCHER M, et al. A rechargeable lithium-ion battery module for underwater use[J]. Journal of Power Sources, 2011, 196(2): 793-800. doi: 10.1016/j.jpowsour.2010.06.071
|
[18] |
HUO Y T, RAO Z H, LIU X J, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387-395. doi: 10.1016/j.enconman.2014.10.015
|
[19] |
ZHAO C R, SOUSA A C M, JIANG F M. Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2019, 129: 660-670. doi: 10.1016/j.ijheatmasstransfer.2018.10.017
|
[20] |
BASU S M, HARIHARAN K S, KOLAKE S M, et al. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system[J]. Applied Energy, 2016, 181: 1-13. doi: 10.1016/j.apenergy.2016.08.049
|
[21] |
WU F C, RAO Z H. The lattice Boltzmann investigation of natural convection for nanofluid based battery thermal management[J]. Applied Thermal Engineering, 2017, 115: 659-669. doi: 10.1016/j.applthermaleng.2016.12.139
|
[22] |
安周建, 贾力, 杨成亮, 等. 锂离子动力电池液体冷却实验研究[J]. 中国科学院大学学报, 2018, 35(2): 254-260. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201802015.htm
AN Z J, JIA L, YANG C L, et al. Experimental investigation of lithium-ion power battery liquid cooling[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(2): 254-260(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201802015.htm
|
[23] |
YANG X H, TAN S C, LIU J. Thermal management of Li-ion battery with liquid metal[J]. Energy Conversion and Management, 2016, 117: 577-585. doi: 10.1016/j.enconman.2016.03.054
|
[24] |
陈通, 孙国华, 王明强, 等. 基于液体的动力电池热管理系统性能研究[J]. 电源技术, 2019, 43(4): 658-661. doi: 10.3969/j.issn.1002-087X.2019.04.034
CHEN T, SUN G H, WANG M Q, et al. Research on thermal management performance of electric vehicle power battery based on liquid[J]. Chinese Journal of Power Sources, 2019, 43(4): 658-661(in Chinese). doi: 10.3969/j.issn.1002-087X.2019.04.034
|
[25] |
李斌, 常国峰, 林春景, 等. 车用动力锂电池产热机理研究现状[J]. 电源技术, 2014, 38(2): 378-381. doi: 10.3969/j.issn.1002-087X.2014.02.057
LI B, CHANG G F, LIN C J, et al. Research on heat generate mechanism of Li-ion batteries for electric vehicles[J]. Chinese Journal of Power Sources, 2014, 38(2): 378-381(in Chinese). doi: 10.3969/j.issn.1002-087X.2014.02.057
|
[26] |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. doi: 10.1149/1.2113792
|
[27] |
闵小滕. 圆柱形锂离子动力电池模组液冷结构优化设计[D]. 合肥: 合肥工业大学, 2019: 35-39.
MIN X T. Optimum design of liquid cooling structure for cylindrical lithium-ion power battery module[D]. Hefei: Hefei University of Technology, 2019: 35-39(in Chinese).
|
[28] |
SAW L H, POON H M, THIAM H S, et al. Novel thermal management system using mist cooling for lithium-ion battery packs[J]. Applied Energy, 2018, 223: 146-158. doi: 10.1016/j.apenergy.2018.04.042
|
[29] |
SMITH J, HINTERBERGER M, HABLE P, et al. Simulative method for determining the optimal operating conditions for a cooling plate for lithium-ion battery cell modules[J]. Journal of Power Sources, 2014, 267: 784-792. doi: 10.1016/j.jpowsour.2014.06.001
|
[30] |
邱焕尧. 基于锂离子动力电池液冷散热结构设计及仿真分析[D]. 西安: 长安大学, 2019: 28-31.
QIU H Y. Design and simulation analysis of liquid cooling structure based on lithium-ion power battery[D]. Xi'an: Chang'an University, 2019: 28-31(in Chinese).
|
[31] |
毛纪昕, 胡建强, 郭力, 等. 冷却液发展及应用综述[J]. 山东化工, 2019, 48(18): 55-56. doi: 10.3969/j.issn.1008-021X.2019.18.024
MAO J X, HU J Q, GUO L, et al. Summary of development and application of coolant[J]. Shandong Chemical Industry, 2019, 48(18): 55-56(in Chinese). doi: 10.3969/j.issn.1008-021X.2019.18.024
|